预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年福建省海滨学校、港尾中学高二数学第一学期期末学业质量监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、如图,若斜边长为的等腰直角(与重合)是水平放置的的直观图,则的面积为()A.2B.C.D.82、设是等比数列,则“对于任意的正整数n,都有”是“是严格递增数列”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体B.每个学生是个体C.样本容量是100D.抽取的100名学生是样本4、已知椭圆方程为:,则其离心率为()A.B.C.D.5、已知函数在上单调递减,则实数的取值范围是()A.B.C.D.6、已知随机变量X,Y满足,,且,则的值为()A.0.2B.0.3C.0..5D.0.67、抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则B.若,则平分C.若,则D.若,延长AO交直线于点D,则D,B,N三点共线8、已知关于x的不等式的解集为空集,则的最小值为()A.B.2C.D.49、在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A.B.C.D.10、过,两点的直线的一个方向向量为,则()A.2B.2C.1D.1二、填空题(本题共6小题,每题5分,共30分)11、数据6,8,9,10,7的方差为______12、设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______13、已知是椭圆的两个焦点,点M在C上,则的最大值为_______14、如图,已知椭圆+y2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,则点G横坐标的取值范围为________15、若x,y满足约束条件,则的最大值为_________16、某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为________.三、解答题(本题共5小题,每题12分,共60分)17、设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.18、已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称19、已知函数,且在处取得极值.(1)求的值;(2)当,求的最小值.20、如图所示,在直三棱柱中,,,(1)求三棱柱的表面积;(2)求异面直线与所成角的大小(结果用反三角函数表示)21、已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】由斜二测还原图形计算即可求得结果.【详解】在斜二测直观图中,由为等腰直角三角形,,可得,.还原原图形如图:则,则.故选:C2、答案:C【解析】根据严格递增数列定义可判断必要性,分类讨论可判断充分性.【详解】若是严格递增数列,显然,所以“对于任意的正整数n,都有”是“是严格递增数列”必要条件;对任意的正整数n都成立,所以中不可能同时含正项和负项,,即,或,即,当时,有,即,是严格递增数列,当时,有,即,是严格递增数列,所以“对于任意的正整数n,都有”是“是严格递增数列”充分条件故选:C3、答案:C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.4、答案:B【解析】根据椭圆的标准方程,确定,计算离心率即可.【详解】由知,,,,即,故选:B5、答案:A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.6、答案:D【解析】利用正态分布的计算公式:,【详解】且又故选:D7、答案:D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可