预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年福建省海滨学校、港尾中学高二数学期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A.B.C.D.2、阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A.B.C.D.3、已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A.B.C.D.4、已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6B.7C.D.55、已知抛物线,则其焦点到准线的距离为()A.B.C.1D.46、已知椭圆的一个焦点坐标是,则()A.5B.2C.1D.7、在四棱锥中,底面是正方形,为的中点,若,则()AB.C.D.8、从1,2,3,4,5中随机抽取三个数,则这三个数能成为一个三角形三边长的概率为()A.B.C.D.9、已知两圆相交于两点,,两圆圆心都在直线上,则值为()A.B.C.D.10、某商场有四类食品,其中粮食类、植物油类、动物性食品类以及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7二、填空题(本题共6小题,每题5分,共30分)11、若向量,,,且向量,,共面,则______12、等差数列中,若,,则______,数列的前n项和为,则______13、在棱长为1的正方体中,___________.14、某人实施一项投资计划,从2021年起,每年1月1日,把上一年工资的10%投资某个项目.已知2020年他的工资是10万元,预计未来十年每年工资都会逐年增加1万元;若投资年收益是10%,一年结算一次,当年的投资收益自动转入下一年的投资本金,若2031年1月1日结束投资计划,则他可以一次性取出的所有投资以及收益应有__________万元.(参考数据:,,)15、某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.16、若椭圆的长轴是短轴的2倍,且经过点,则椭圆的离心率为________.三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,椭圆:的左顶点到右焦点的距离是3,离心率为(1)求椭圆的标准方程;(2)斜率为的直线经过椭圆的右焦点,且与椭圆相交于,两点.已知点,求的值18、已知双曲线C:的离心率为,过点作垂直于x轴的直线截双曲线C所得弦长为(1)求双曲线C的方程;(2)直线()与该双曲线C交于不同的两点A,B,且A,B两点都在以点为圆心的同一圆上,求m的取值范围19、已知点及圆,点P是圆B上任意一点,线段的垂直平分线l交半径于点T,当点P在圆上运动时,记点T的轨迹为曲线E(1)求曲线E的方程;(2)设存在斜率不为零且平行的两条直线,,它们与曲线E分别交于点C、D、M、N,且四边形是菱形,求该菱形周长的最大值20、如图,在正三棱柱中,,,,分别为,,的中点(1)证明:(2)求平面与平面所成锐二面角的余弦值21、已知数列的首项,且满足.(1)求证:数列是等比数列;(2)求数列的前n项和.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.2、答案:A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.3、答案:A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形