预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年福建省海滨学校、港尾中学高二数学期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知中,内角所对的边分别,若,,,则()A.B.C.D.2、已知,,点为圆上任意一点,设,则的最大值为()A.B.C.D.3、已知实数成等比数列,则圆锥曲线的离心率为()A.B.2C.或2D.或4、已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A.B.C.D.5、已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则6、两位同学课余玩一种类似于古代印度的“梵塔游戏”:有3个柱子甲、乙、丙,甲柱上有个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图).把这个盘子从甲柱全部移到乙柱游戏结束,在移动的过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下.设游戏结束需要移动的最少次数为,则当时,和满足A.B.C.D.7、在空间直角坐标系中,已知点M是点在坐标平面内的射影,则的坐标是()A.B.C.D.8、复数的共轭复数是A.B.C.D.9、如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米B.米C.米D.米10、已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.12、已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.13、经过点,的直线的倾斜角为___________.14、古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______15、不等式的解集是________16、已知抛物线:上有两动点,,且,则线段的中点到轴距离的最小值是___________.三、解答题(本题共5小题,每题12分,共60分)17、已知,直线过且与交于两点,过点作直线的平行线交于点(1)求证:为定值,并求点的轨迹的方程;(2)设动直线与相切于点,且与直线交于点,在轴上是否存在定点,使得以为直径的圆恒过定点?若存在,求出的坐标;若不存在,说明理由18、已知椭圆:,是坐标原点,,分别为椭圆的左、右焦点,点在椭圆上,过作的外角的平分线的垂线,垂足为,且(1)求椭圆方程:(2)设直线:与椭圆交于,两点,且直线,,的斜率之和为0(其中为坐标原点)①求证:直线经过定点,并求出定点坐标:②求面积的最大值19、已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:20、已知抛物线:上的点到焦点的距离为(1)求抛物线的方程;(2)设纵截距为的直线与抛物线交于,两个不同的点,若,求直线的方程21、在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】利用正弦定理可直接求得结果.【详解】在中,由正弦定理得:.故选:B.2、答案:C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.3、答案:C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.4、答案:B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.5、答案:B【解析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.6、答案:C【解析】通过写出几项,寻找规律,即可得到和满足的递推公式.【详解】若甲柱有个盘,甲柱上的盘从上往下设为,其中,,当时,将移到乙柱,只移动1次;当时,将移到乙柱