预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届上海市崇明区市级名校高二数学第一学期期末统考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A.B.C.D.2、已知圆和圆恰有三条公共切线,则的最小值为()A.6B.36C.10D.3、函数图象的一个对称中心为()A.B.C.D.4、已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A.B.C.D.5、()A.-2B.-1C.1D.26、命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),7、圆关于直线l:对称的圆的方程为()A.B.C.D.8、有甲、乙两个抽奖箱,甲箱中有3张无奖票3张有奖票,乙箱中有4张无奖票2张有奖票,某人先从甲箱中抽出一张放进乙箱,再从乙箱中任意抽出一张,则最后抽到有奖票的概率是()A.B.C.D.9、函数的极大值点为()A.B.C.D.不存在10、直线x﹣y+3=0的倾斜角是()A.30°B.45°C.60°D.150°二、填空题(本题共6小题,每题5分,共30分)11、设,则_________12、关于曲线C:1,有如下结论:①曲线C关于原点对称;②曲线C关于直线x±y=0对称;③曲线C是封闭图形,且封闭图形的面积大于2π;④曲线C不是封闭图形,且它与圆x2+y2=2无公共点;⑤曲线C与曲线D:|x|+|y|=2有4个公共点,这4点构成正方形其中正确结论的个数是_____13、一个质地均匀的正四面体,其四个面涂有不同的颜色,抛掷这个正四面体一次,观察它与地面接触的颜色得到样本空间{红,黄,蓝,绿},设事件{红,黄},事件{红,蓝},事件{黄,绿},则下列判断:①E与F是互斥事件;②E与F是独立事件;③F与G是对立事件;④F与G是独立事件.其中正确判断的序号是______(请写出所有正确判断的序号)14、以正方体的对角线的交点为坐标原点O建立右手系的空间直角坐标系,其中,,,则点的坐标为______15、设双曲线C:(a>0,b>0)的一条渐近线为y=x,则C的离心率为_________16、桌面排列着100个乒乓球,两个人轮流拿球装入口袋,能拿到第100个乒乓球人为胜利者.条件是:每次拿走球的个数至少要拿1个,但最多又不能超过5个,这个游戏中,先手是有必胜策略的,请问:如果你是最先拿球的人,为了保证最后赢得这个游戏,你第一次该拿走___个球三、解答题(本题共5小题,每题12分,共60分)17、在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.18、已知函数(1)当时,求的极值;(2)讨论的单调性19、若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.20、若等比数列的各项为正,前项和为,且,.(1)求数列的通项公式;(2)若是以1为首项,1为公差的等差数列,求数列的前项和.21、已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.2、答案:B【解析】由公切线条数得两圆外切,由此可得的关系,从而点在以原点为圆心,4为半径的圆上,记,由求得的最小值,平方后即得结论【详解】圆标准方程为,,半径为,圆标准方程为,,半径为,两圆有三条公切线,则两圆外切,所以,即,点在以原点为圆心,4为半径的圆上,记,,所以,所以的最小值为故选:B3、答案:D【解析】要求函数图象的一个对称中心的坐标,关键是求函数时的的值;令,根据余弦函数图象性质可得,此时可求出,然后对进行取值,进而结合选项即可得到答案.【详解】解:令,则解得,即,图象的对称中心为,令,即可得到图象的一个对称中心为故选:D【点睛】本题考查三角函数的对称中心,正弦函数的对称中心为,余弦函数的对称中心为.4、答案:C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,