预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省凌源市实验中学高二数学第一学期期末质量跟踪监视试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知命题:,;命题:,.则下列命题中为真命题的是()A.B.C.D.2、已知等差数列满足,则等于()A.B.C.D.3、在数列中,,则()A.2B.C.D.4、已知函数,若对任意,都有成立,则a的取值范围为()A.B.C.D.5、若曲线与曲线在公共点处有公共切线,则实数()A.B.C.D.6、与直线关于轴对称的直线的方程为()A.B.C.D.7、已知,且直线始终平分圆的周长,则的最小值是()A.2B.C.6D.168、如图,平面四边形中,,,,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A.B.C.D.9、命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆的内接四边形是矩形10、如图给出的是一道典型的数学无字证明问题:各矩形块中填写的数字构成一个无穷数列,所有数字之和等于1.按照图示规律,有同学提出了以下结论,其中正确的是()A.由大到小的第八个矩形块中应填写的数字为B.前七个矩形块中所填写的数字之和等于C.矩形块中所填数字构成的是以1为首项,为公比的等比数列D.按照这个规律继续下去,第n-1个矩形块中所填数字是二、填空题(本题共6小题,每题5分,共30分)11、已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____12、椭圆的右焦点为,过原点的直线与椭圆交于两点、,则的面积的最大值为___________.13、已知函数,若过点存在三条直线与曲线相切,则的取值范围为___________14、如图,椭圆左顶点为轴上一点满足,且线段与椭圆交于点是以为底边的等腰三角形,则椭圆离心率为__________.15、过点且与直线垂直的直线方程为______16、双曲线上一点P到的距离最小值为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知数列满足,(1)设,求证:数列是等比数列;(2)求数列的前项和18、设等差数列的前项和为(1)求的通项公式;(2)求数列的前项和19、如图,已知平面,底面为正方形,,分别为的中点(1)求证:平面;(2)求与平面所成角的正弦值20、已知命题p:实数x满足(其中);命题q:实数x满足(1)若,为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数的取值范围21、如图,四棱锥中,底面为梯形,底面,,,,.(1)求证:平面平面;(2)设为上一点,满足,若直线与平面所成的角为,求二面角的余弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C2、答案:A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.3、答案:D【解析】根据递推关系,代入数据,逐步计算,即可得答案.【详解】由题意得,令,可得,令,可得,令,可得,令,可得.故选:D4、答案:C【解析】求出函数的导数,再对给定不等式等价变形,分离参数借助均值不等式计算作答.【详解】对函数求导得:,,,则,,而,当且仅当,即时“=”,于是得,解得,所以a的取值范围为.故选:C【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.5、答案:A【解析】设公共点为,根据导数的几何意义可得出关于、的方程组,即可解得实数、的值.【详解】设公共点为,的导数为,曲线在处的切线斜率,的导数为,曲线在处的切线斜率,因为两曲线在公共点处有公共切线,所以,且,,所以,即解得,所以,解得,故选:A6、答案:D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.7、答案:B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.8、答案:A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:A【点睛】本题