预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年湖南省衡阳市衡阳县第三中学高二数学期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知抛物线上一点到焦点的距离为3,准线为l,若l与双曲线的两条渐近线所围成的三角形面积为,则双曲线C的离心率为()A.3B.C.D.2、过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=03、已知为等比数列的前n项和,,,则()A.30B.C.D.30或4、已知等比数列的公比为,则“”是“是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、直线的倾斜角大小为()A.B.C.D.6、函数的图像在点处的切线方程为()A.B.C.D.7、内角、、的对边分别为、、,若,,,则()A.B.C.D.8、过坐标原点作直线的垂线,垂足为,则的取值范围是()A.B.C.D.9、已知函数,若存在唯一的零点,且,则的取值范围是A.B.C.D.10、下列双曲线中,渐近线方程为的是A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、在正方体中,二面角的大小为__________(用反三角表示)12、椭圆的离心率是______13、在棱长为2的正方体中,点P是直线上的一个动点,点Q在平面上,则的最小值为________.14、数据6,8,9,10,7的方差为______15、如图,在等腰直角△ABC中,,点P是边AB上异于A、B的一点,光线从点P出发,经BC、CA反射后又回到原点P.若光线QR经过△ABC的内心,则___________.16、已知等差数列中,,,则______________三、解答题(本题共5小题,每题12分,共60分)17、有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和18、如图,在正方体中,分别是,的中点.求证:(1)平面;(2)平面平面.19、已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.20、已知直线,圆.(1)求证:直线l恒过定点;(2)若直线l的倾斜角为,求直线l被圆C截得的弦长.21、已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】先由已知结合抛物线的定义求出,从而可得抛物线的准线方程,则可求出准线l与两条渐近线的交点分别为,然后由题意可得,进而可求出双曲线的离心率详解】依题意,抛物线准线,由抛物线定义知,解得,则准线,双曲线C的两条渐近线为,于是得准线l与两条渐近线的交点分别为,原点为O,则面积,双曲线C的半焦距为c,离心率为e,则有,解得故选:C2、答案:A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为3、答案:A【解析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由得,则等比数列的公比,则得,令,则即,解得或(舍去),,则故选:A4、答案:B【解析】先分析充分性:假设特殊等比数列即可判断;再分析充分性,由条件得恒成立,再对和进行分类讨论即可判断.【详解】先分析充分性:在等比数列中,,所以假设,,所以,等比数列为递减数列,故充分性不成立;分析必要性:若等比数列的公比为,且是递增数列,所以恒成立,即恒成立,当,时,成立,当,时,不成立,当,时,不成立,当,时,不成立,当,时,成立,当,时,不成立,当,时,不恒成立,当,时,不恒成立,所以能使恒成立的只有:,和,,易知此时成立,所以必要性成立.故选:B.5、答案:B【解析】将直线方程变为斜截式,根据斜率与倾斜角关系可直接求解.【详解】由直线可得,所以,设倾斜角为,则因为所以故选:B6、答案:B【解析】求得函数的导数,计算出和的值,可得出所求切线的点斜式方程,化简即可.详解】,,,,因此,所求切线的方程为,即.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7、答案:C【解析】利用正弦定理可求得边的长.【详解】由正弦定理得.故选:C.8、答案:D【解析】求出直线直线过的定点A,由题意可知垂足是落在以OA为直径的圆上,由此可利用的几何意义求得答案,【详解】直线,即,令,解得,即直线过定点,由过坐标原点作直线的垂线,垂足为,可知:落在以OA为直径的圆上,而以OA为直径的圆为,如图示:故可看作是圆上的点到原点距离的平方