预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年辽宁省阜新市博大教育高二数学期末调研试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知,则点到平面的距离为()A.B.C.D.2、《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸(注:一丈等于十尺,一尺等于十寸),问立夏日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸3、已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④B.②③C.①②D.③④4、已知F1、F2是双曲线E:(a>0,b>0)的左、右焦点,过F1的直线与双曲线左、右两支分别交于点P、Q.若,M为PQ的中点,且,则双曲线的离心率为()A.B.C.D.5、过,两点的直线的一个方向向量为,则()A.2B.2C.1D.16、等差数列的前项和为,若,,则()A.12B.18C.21D.277、已知函数的导数为,且满足,则()A.B.C.D.8、已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A.B.C.D.9、抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A.B.C.D.10、意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012B.1346C.1348D.1350二、填空题(本题共6小题,每题5分,共30分)11、若、是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于,两点.若为等边三角形,则双曲线的离心率为________.12、设是定义在上的可导函数,且满足,则不等式解集为_______13、已知在时有极值0,则的值为____14、某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.15、日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断増加.已知将吨水净化到纯净度为时所需费用(单位:元)为.则净化到纯净度为时所需费用的瞬时变化率是净化到纯净度为时所需费用的瞬时变化率的___________倍,这说明,水的纯净度越高,净化费用增加的速度越___________(填“快”或“慢”).16、阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________三、解答题(本题共5小题,每题12分,共60分)17、在等差数列中,,前10项和(1)求列的通项公式;(2)若数列是首项为1,公比为2的等比数列,求的前8项和18、已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标19、如图,在四棱锥P-ABCD中,底面ABCD是一个直角梯形,其中∠BAD=90°,AB∥DC,PA⊥底面ABCD,AB=AD=PA=2,DC=1,点M和点N分别为PA和PC的中点(1)证明:直线DM∥平面PBC;(2)求直线BM和平面BDN所成角的余弦值;(3)求二面角M-BD-N正弦值;(4)求点P到平面DBN距离;(5)设点N在平面BDM内的射影为点H,求线段HA的长20、如图,P为圆上一动点,点A坐标为,线段AP的垂直平分线交直线BP于点Q(1)求点Q的轨迹E的方程;(2)过点A的直线l交E于C,D两点,若△BCD内切圆的半径为,求直线l的方程.21、已知双曲线与椭圆有公共焦点,且它的一条渐近线方程为.(1)求椭圆的焦点坐标;(2)求双曲线的标准方程参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】根据给定条件求出平面的法向量,再利用空间向量求出点到平面的距离.【详解】依题意,,设平面的法向量,则,令,得,则点到平面的距离为,所以点到平面的距离为.故选:A2、答案:D【解析】结合等差数列知识求得正确答案.【详解】设冬至日影长,公差为,则,所以立夏日影长丈,即四尺五寸.故选:D3、答案:B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对