预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年浙江省十校联盟选考学考高二数学期末质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、若直线的斜率,则直线的倾斜角的取值范围是()A.B.C.D.2、在平面直角坐标系中,已知的顶点,,其内切圆圆心在直线上,则顶点C的轨迹方程为()A.B.C.D.3、如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A.B.C.D.4、已知,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分又不必要条件5、设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是()A.6B.8C.9D.106、已知抛物线y2=2px(p>0)的焦点为F,准线为l,M是抛物线上一点,过点M作MN⊥l于N.若△MNF是边长为2的正三角形,则p=()A.B.C.1D.27、直线的倾斜角为()AB.C.D.8、已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0B.1C.2D.39、函数在和处的导数的大小关系是()A.B.C.D.不能确定10、已知F是椭圆C的一个焦点,B是短轴的一个端点,直线BF与椭圆C的另一个交点为D,且,则C的离心率为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、在中,,,,则此三角形的最大边长为___________.12、四棱锥中,底面是一个平行四边形,,,,则四棱锥体积为_______13、已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________14、在平面直角坐标系中,双曲线左、右焦点分别为,,点M是双曲线右支上一点,,则双曲线的渐近线方程为___________.15、已知数列满足,,则_________.16、已知为抛物线:的焦点,为抛物线上在第一象限的点.若为的中点,为抛物线的顶点,则直线斜率的最大值为______.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆的下焦点为、上焦点为,其离心率.过焦点且与x轴不垂直的直线l交椭圆于A、B两点(1)求实数m的值;(2)求△ABO(O为原点)面积的最大值18、已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.19、已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立20、从某居民区随机抽取2021年的10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄(单位:千元)的数据资料,计算得,,,(1)求家庭的月储蓄对月收入的线性回归方程;(2)判断变量与之间是正相关还是负相关;(3)利用(1)中的回归方程,分析2021年该地区居民月收入与月储蓄之间的变化情况,并预测当该居民区某家庭月收入为7千元,该家庭的月储蓄额.附:线性回归方程系数公式中,,,其中,为样本平均值21、求满足下列条件的圆锥曲线的标准方程:(1)已知椭圆的焦点在x轴上且一个顶点为,离心率为;(2)求一个焦点为,渐近线方程为的双曲线的标准方程;(3)抛物线,过其焦点斜率为1的直线交抛物线于A、B两点,且线段AB的中点的纵坐标为2.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据斜率的取值范围,结合来求得倾斜角的取值范围.【详解】设倾斜角为,因为,且,所以.故选:B2、答案:A【解析】根据图可得:为定值,利用根据双曲线定义,所求轨迹是以、为焦点,实轴长为6的双曲线的右支,从而写出其方程即得【详解】解:如图设与圆切点分别为、、,则有,,,所以根据双曲线定义,所求轨迹是以、为焦点,实轴长为4的双曲线的右支(右顶点除外),即、,又,所以,所以方程为故选:A3、答案:B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B4、答案:B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.5、答案:A【解析】计算抛物线的准线,根据距离结合抛物线的定义得到答案.【详解】抛物线的焦点为,准线方程为,到轴的距离是4,故到准线的距离是,故点到该抛物线焦点的距离是.故选:A.6、答案:C【解析】根据正三角形的性质,结合抛物线的性质进行求解即可.【详解】如图所示:准线l与横轴的交点为,由抛物线的性质可知:,因为若△MNF是边长为2的正三角形,所以,,显然,在直角三角形中,,故选:C7、答案:C【解析】设直线倾斜角为,则,再结合直线的斜率与倾斜角的