预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共21页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年江苏省南通市海安高级中学高二数学第一学期期末教学质量检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4B.3C.2D.12、已知平面向量,且,向量满足,则的最小值为()A.B.C.D.3、已知,则点到平面的距离为()A.B.C.D.4、椭圆的()A.焦点在x轴上,长轴长为2B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为D.焦点在y轴上,长轴长为5、已知等差数列前项和为,若,则的公差为()A.4B.3C.2D.16、已知向量与平行,则()A.B.C.D.7、等差数列中,,,则()A.1B.2C.3D.48、已知a,b为正数,,则下列不等式一定成立的是()A.B.C.D.9、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为()A.24B.18C.12D.610、已知抛物线的焦点为F,准线为l,点P在抛物线上,直线PF交x轴于Q点,且,则点P到准线l的距离为()A.4B.5C.6D.7二、填空题(本题共6小题,每题5分,共30分)11、已知命题,则命题的的否定是___________.12、已知直线l是抛物线()的准线,半径为的圆过抛物线的顶点O和焦点F,且与l相切,则抛物线C的方程为___________;若A为C上一点,l与C的对称轴交于点B,在中,,则的值为___________.13、已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.14、如图,正方体中,点E,F,G分别是,AB,的中点,则直线与GF所成角的大小是______(用反三角函数表示)15、在递增等比数列中,其前项和,若,,则_________.16、直线与直线间的距离为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知双曲线与有相同的渐近线,且经过点.(1)求双曲线的方程;(2)已知直线与双曲线交于不同的两点,且线段的中点在圆上,求实数的值.18、如图甲是由正方形,等边和等边组成的一个平面图形,其中,将其沿,,折起得三棱锥,如图乙.(1)求证:平面平面;(2)过棱作平面交棱于点,且三棱锥和的体积比为,求直线与平面所成角的正弦值.19、某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg20、浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率21、某城镇为推进生态城镇建设,对城镇的生态环境、市容市貌等方面进行了全面治理,为了解城镇居民对治理情况的评价和建议,现随机抽取了200名居民进行问卷并评分(满分100分),将评分结果制成如下频率分布直方图,已知图中a,b,c成等比数列,且公比为2(1)求图中a,b,c的值,并估计评分的均值(各段分数用该段中点值作代表);(2)根据统计数据,在评分为“50~60”和“80~90”的居民中用分层抽样的方法抽取了6个居民.若从这6个居民中随机选择2个参加座谈,求所抽取的2个居民中至少有1个评分在“80~90”的概率参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C2、答案:B【解析】由题设可得,又,易知,,将问题转化为平面点线距离关系:向量的终点为圆心,1为半径的圆上的点到向量所在射线的距离最短,即可求的最小值.【详解】解:∵,而,∴,又,即,又,,∴,若,则,∴在以为圆心,1为半径的圆上,若,则,∴问题转化为求在圆上的哪一