预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东实验中学高二数学第二学期期末监测试题含解析一、单选题(本题共10小题,每题5分,共50分)1、命题“,均有”的否定为()A.,均有B.,使得C.,使得D.,均有2、数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出米,故称它们为六边形数,那么第11个六边形数为()A.153B.190C.231D.2763、设函数,则()A.4B.5C.6D.74、数列是等比数列,是其前n项之积,若,则的值是()A.1024B.256C.2D.5125、已知点,点关于原点对称点为,则()A.B.C.D.6、若抛物线的准线方程是,则抛物线的标准方程是()A.B.C.D.7、已知正的边长为,那么的平面直观图的面积为()A.B.C.D.8、设等比数列的前项和为,若,则的值是()A.B.C.D.49、已知数列中,,(),则等于()A.B.C.D.210、设函数的导函数是,若,则()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、某高中高二年级学生在学习完成数学选择性必修一后进行了一次测试,总分为100分.现用分层随机抽样方法从学生的数学成绩中抽取一个样本量为40的样本,再将40个成绩样本数据分为6组:40,50),50,60),60,70),70,80),80,90),90,100,绘制得到如图所示的频率分布直方图.(1)从所给的频率分布直方图中估计成绩样本数据众数,平均数,中位数;(2)在区间40,50)和90,100内的两组学生成绩样本数据中,随机抽取两个进调查,求调查对象来自不同分组的概率.12、定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.13、已知函数,数列是正项等比数列,且,则__________14、若正数x、y满足,则的最小值等于________.15、由曲线围成的图形的面积为_______________16、椭圆x2+=1上的点到直线x+y-4=0的距离的最小值为_________.三、解答题(本题共5小题,每题12分,共60分)17、在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.18、已知命题实数满足成立,命题方程表示焦点在轴上的椭圆,若命题为真,命题或为真,求实数的取值范围19、已知抛物线经过点.(Ⅰ)求抛物线C的方程及其焦点坐标;(Ⅱ)过抛物线C上一动点P作圆的两条切线,切点分别为A,B,求四边形面积的最小值.20、在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.21、已知椭圆C:的右顶点为A,上顶点为B.离心率为,(1)求椭圆C的标准方程;(2)设椭圆的右焦点为F,过点F的直线l与椭圆C相交于D,E两点,直线:与x轴相交于点H,过点D作,垂足为①求四边形ODHE(O为坐标原点)面积的取值范围;②证明:直线过定点G,并求点G的坐标参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】全称命题的否定是特称命题【详解】根据全称命题的否定是特称命题,所以命题“,均有”的否定为“,使得”故选:C2、答案:C【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:C3、答案:D【解析】求出函数的导数,将x=1代入即可求得答案.【详解】,故,故选:D.4、答案:D【解析】设数列的公比为q,由已知建立方程求得q,再利用等比数列的通项公式可求得答案.【详解】解:因为数列是等比数列,是其前n项之积,,设数列的公比为q,所以,解得,所以,故选:D.5、答案:C【解析】根据空间两点间距离公式,结合对称性进行求解即可.【详解】因为点关于原点的对称点为,所以,因此,故选:C6、答案:D【解析】根据抛物线的准线方程,可直接得出抛物线的焦点,进而利用待定系数法求得抛物线的标准方程【详解】准线方程为,则说明抛物线的焦点在轴的正半轴则其标准方程可设为:则准线方程为:解得:则抛物线的标准方程为:故选:D7、答案:D【解析】作出正的实际图形和直观图,计算出直观图的底边上的高,由此可求得的面积.【详解】如图①②所示的实际图形和直观图.由斜二测画法可知,,,在图②中作于,则.所以.故选:D.【点睛】本题考查直观图面积的计算,考查计算能力,属于基础题.8、答案:B【解析】根据题意,由等比数列的性质可知成等比数列,从而可得,即可求出的结果.【详解】解:已知等比数列的前项和为,,由等比数列的性质得:成等比数列,且公比不为-1即成等比