预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年广东实验中学高二数学期末监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、抛物线的准线方程是()A.B.C.D.2、已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2B.3C.4D.53、直线分别交坐标轴于A,B两点,O为坐标原点,三角形OAB的内切圆上有动点P,则的最小值为()A.16B.18C.20D.224、已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1)B.x2-=1C.x2-=1(x1)D.-x2=15、已知三棱锥O—ABC,点M,N分别为线段AB,OC的中点,且,,,用,,表示,则等于()A.B.C.D.6、对于两个平面、,“内有无数多个点到的距离相等”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、曲线与曲线的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等8、双曲线的渐近线方程是()A.B.C.D.9、4位同学报名参加四个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.24种B.81种C.64种D.256种10、已知F为椭圆C:=1(a>b>0)右焦点,O为坐标原点,P为椭圆C上一点,若|OP|=|OF|,∠POF=120°,则椭圆C的离心率为()A.B.C.-1D.-1二、填空题(本题共6小题,每题5分,共30分)11、命题“存在x∈R,使得x2+2x+5=0”的否定是12、若在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列,现将数列进行构造,第次得到数列;第次得到数列;依次构造,第次得到数列;记,则(1)___________,(2)___________13、等比数列中,,,则数列的公比为____.14、已知命题,则命题的的否定是___________.15、若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______16、矩形ABCD中,,在CD边上任取一点M,则的最大边是AB的概率为______三、解答题(本题共5小题,每题12分,共60分)17、已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围18、已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.19、已知抛物线的焦点为F,直线l交抛物线于不同的A、B两点.(1)若直线l的方程为,求线段AB的长;(2)若直线l经过点P(-1,0),点A关于x轴的对称点为A',求证:A'、F、B三点共线.20、已知抛物线C:,过点且斜率为k的直线与抛物线C相交于P,Q两点.(1)设点B在x轴上,分别记直线PB,QB的斜率为.若,求点B的坐标;(2)过抛物线C的焦点F作直线PQ的平行线与抛物线C相交于M,N两点,求的值.21、某高中招聘教师,首先要对应聘者的简历进行筛选,简历达标者进入面试,面试环节应聘者要回答3道题,第一题为教育心理学知识,答对得4分,答错得0分,后两题为学科专业知识,每道题答对得3分,答错得0分(1)甲、乙、丙、丁、戊来应聘,他们中仅有3人的简历达标,若从这5人中随机抽取3人,求这3人中恰有2人简历达标的概率;(2)某进入面试的应聘者第一题答对的概率为,后两题答对的概率均为,每道题答对与否互不影响,求该应聘者的面试成绩X的分布列及数学期望参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】将抛物线的方程化为标准方程,可得出该抛物线的准线方程.【详解】抛物线的标准方程为,则,可得,因此,该抛物线的准线方程为.故选:D.2、答案:C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.3、答案:B【解析】由题意,求出内切圆的半径和圆心坐标,设,则,由表示内切圆上的动点P到定点的距离的平方,从而即可求解最小值.【详解】解:因为直线分别交坐标轴于A,B两点,所以设,则,因为,所以三角形OAB的内切圆半径,内切圆圆心为,所以内切圆的方程为,设,则,因为表示内切圆上的动点P到定点的距离的平方,且在内切圆内,所以,所以,,即的最小值为18