预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年安徽省安庆一中、山西省太原五中等五省六校高二数学第一学期期末学业质量监测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数是偶函数且在上单调递减,,则的解集为()A.B.C.D.2、已知:,:,若是的充分不必要条件,则实数的取值范围是()A.B.C.D.3、命题“∃x0∈(0,+∞),”的否定是()A.∀x∈(﹣∞,0),2x+sinx≥0B.∀x∈(0,+∞),2x+sinx≥0C.∃x0∈(0,+∞),D.∃x0∈(﹣∞,0),4、已知直线与平行,则a的值为()A.1B.﹣2C.D.1或﹣25、在平面直角坐标系中,线段的两端点,分别在轴正半轴和轴正半轴上滑动,若圆上存在点是线段的中点,则线段长度的最小值为()A.4B.6C.8D.106、德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96B.97C.98D.997、若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是()A.B.C.D.8、一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A.B.C.D.9、过点,的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或410、在直三棱柱中,底面是等腰直角三角形,,则与平面所成角的正弦值为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、圆和圆的公切线的条数为______12、曲线在处的切线方程是________.13、命题“若,则二元一次不等式表示直线的右上方区域(包含边界)”的条件:_________,结论:_____________,它是_________命题(填“真”或“假”).14、两姐妹同时推销某一商品,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如图所示,已知妹妹的销售量的平均数为14,姐姐的销售量的中位数比妹妹的销售量的众数大2,则的值为______.15、已知数列是等差数列,若,则___________.16、在数列中,若,则该数列的通项公式__________三、解答题(本题共5小题,每题12分,共60分)17、如图是一抛物线型机械模具的示意图,该模具是抛物线的一部分且以抛物线的轴为对称轴,已知顶点深度4cm,口径长为12cm(1)以顶点为坐标原点建立平面直角坐标系(如图),求该抛物线的标准方程;(2)为满足生产的要求,需将磨具的顶点深度减少1cm,求此时该磨具的口径长18、如图,已知抛物线的焦点为F,抛物线C上的点到准线的最小距离为1(1)求抛物线C的方程;(2)过点F作互相垂直的两条直线l1,l2,l1与抛物线C交于A,B两点,l2与抛物线C交于C,D两点,M,N分别为弦AB,CD的中点,求|MF|·|NF|的最小值19、如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F为PA中点,,.四边形PDCE为矩形,线段PC交DE于点N(1)求证:AC∥平面DEF;(2)求二面角A-BC-P的余弦值20、已知数列的前n项和为,,且(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:21、已知椭圆C对称中心在原点,对称轴为坐标轴,且,两点(1)求椭圆C的方程;(2)设M、N分别为椭圆与x轴负半轴、y轴负半轴的交点,P为椭圆上在第一象限内一点,直线PM与y轴交于点S,直线PN与x轴交于点T,求证:四边形MSTN的面积为定值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.2、答案:C【解析】由是的充分不必要条件,则是的充分不必要条件,再根据对应集合的包含关系可得答案.【详解】由,即,设,由是的充分不必要条件,则是的充分不必要条件所以,则故选:C3、答案:B【解析】利用特称命题的否定是全称命题,写出结果即可【详解】命题“∃x0∈(0,+∞),”的否定是“∀x∈(0,+∞),2x+sinx≥0”故选:B4、答案:A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.5、答案:C【解析】首先求点的轨迹,将问题转化为两圆有交点,即根据两圆的位置关系,求参数的取值范围.【详解】设,,的中点为,则,故点的轨迹是以原点为圆心,为半径的圆,问题转化为圆与圆有交点,所以,,即,解得