预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年广西桂林市阳朔中学高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增的等差数列,这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14B.16C.18D.202、若1,m,9三个数成等比数列,则圆锥曲线的离心率是()A.或B.或2C.或D.或23、若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”,下列椭圆中是“对偶椭圆”的是()A.B.C.D.4、大数学家阿基米德的墓碑上刻有他最引以为豪的数学发现的象征图——球及其外切圆柱(如图).以此纪念阿基米德发现球的体积和表面积,则球的体积和表面积均为其外切圆柱体积和表面积的()A.B.C.D.5、魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2B.3C.D.6、“若”为真命题,那么p是()A.B.C.D.7、点是正方体的底面内(包括边界)的动点.给出下列三个结论:①满足的点有且只有个;②满足的点有且只有个;③满足平面的点的轨迹是线段.则上述结论正确的个数是()A.B.C.D.8、设等差数列的前n项和为,且,则()A.64B.72C.80D.1449、已知函数,若,,则实数的取值范围是A.B.C.D.10、已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知函数在上单调递减,则的取值范围是______.12、已知为抛物线的焦点,为抛物线上的任意一点,点,则的最小值为______.13、已知数列的前项和为,且满足,则______.14、设O为坐标原点,抛物线的焦点为F,P为抛物线上一点,若,则的面积为____________15、已知正项数列的前n项和为,且,则__________,满足不等式的最大整数为__________16、函数在区间上的最小值为__________.三、解答题(本题共5小题,每题12分,共60分)17、已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立18、如下图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于、两点,且、、三点互不重合(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值19、已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标20、已知等比数列的前项和为,且.(1)求数列的通项公式;(2)令,求数列的前项和.21、已知椭圆的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设斜率为k的直线与椭圆C交于两点,O为坐标原点,若的面积为定值,判断是否为定值,如果是,求出该定值;如果不是,说明理由.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】由题可知这是一个等差数列,前项和,,列式求基本量即可.【详解】设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:B2、答案:D【解析】运用等比数列的性质可得,再讨论,,求出曲线的,,由离心率公式计算即可得到【详解】三个数1,,9成等比数列,则,解得,,当时,曲线为椭圆,则;当时,曲线为为双曲线,则离心率故选:3、答案:A【解析】由题意可得,所给的椭圆中的,的值求出的值,进而判断所给命题的真假【详解】解:因为椭圆短的轴两顶点恰好是旋转前椭圆的两焦点,即,即,中,,,所以,故,所以正确;中,,,所以,所以不正确;中,,,所以,所以不正确;中,,,所以,所以不正确;故选:4、答案:C【解析】设球的半径为,则圆柱的底面半径为,高为,分别求出球的体积与表面积,圆柱的体积与表面积,从而得出答案.【详解】设球的半径为,则圆柱的底面半径为,高为所以球的体积为,表面积为.圆柱的体积为:,所以其体积之比为:圆柱的侧面积为:,圆柱的表面积为:所以其表面积之比为:故选:C5、答案:A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以