预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024-2025学年上海市东实验学校高二数学期末经典试题含解析一、单选题(本题共10小题,每题5分,共50分)1、函数的最小值是()A.3B.4C.5D.62、从直线上动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是()A.B.C.D.3、在等差数列中,已知,则数列的前6项之和为()A.12B.32C.36D.724、某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当抽取的一般员工人数为()A.100B.15C.80D.505、下图是一个“双曲狭缝”模型,直杆沿着与它不平行也不相交的轴旋转时形成双曲面,双曲面的边缘为双曲线.已知该模型左、右两侧的两段曲线(曲线AB与曲线CD)所在的双曲线离心率为2,曲线AB与曲线CD中间最窄处间的距离为10cm,点A与点C,点B与点D均关于该双曲线的对称中心对称,且|AB|=30cm,则|AD|=()A.10cmB.20cmC.25cmD.30cm6、设,为双曲线的上,下两个焦点,过的直线l交该双曲线的下支于A,B两点,且满足,,则双曲线的离心率为()A.B.C.D.7、已知等比数列中,,则这个数列的公比是()A.2B.4C.8D.168、下列直线中,倾斜角最大的为()A.B.C.D.9、在区间内随机地取出两个数,则两数之和小于的概率是()A.B.C.D.10、直线的倾斜角为A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知圆,以点为中点的弦所在的直线的方程是___________12、已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.13、如图,在四棱锥中,平面,底面是菱形,且,则异面直线与所成的角的余弦值为______,点到平面的距离等于______.14、若向量,且夹角的余弦值为________15、如图,棱长为2的正方体中,E,F分别为棱、的中点,G为面对角线上一个动点,则三棱锥的外接球表面积的最小值为___________.16、已知,,且与的夹角为钝角,则x的取值范围是___.三、解答题(本题共5小题,每题12分,共60分)17、已知圆C经过,,三点,并且与y轴交于P,Q两点,求线段PQ的长度.18、已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.19、已知函数.(1)判断的单调性.(2)证明:.20、已知圆,直线,直线l与圆C相交于P,Q两点(1)求的最小值;(2)当的面积最大时,求直线l的方程21、如图,已知直三棱柱中,,,E,F分别为AC和的中点,D为棱上的一点.(1)证明:;(2)当平面DEF与平面所成的锐二面角的余弦值为时,求点B到平面DFE距离.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】先判断函数的单调性,再利用其单调性求最小值【详解】由,得,因为,所以,所以在上单调递增,所以,故选:D2、答案:B【解析】分析可知当时,最大,计算出、,进而可计算得出四边形(为坐标原点)面积.【详解】圆的圆心为坐标原点,连接、、,则,设,则,,则,当取最小值时,,此时,,,,故,此时,.故选:B.3、答案:C【解析】利用等差数列的求和公式结合角标和定理即可求解.【详解】解:等差数列中,所以等差数列的前6项之和为:故选:C.4、答案:C【解析】按照比例关系,分层抽取.【详解】由题意可知,所以应当抽取的一般员工人数为.故选:C5、答案:B【解析】由离心率求出双曲线方程,由对称性设出点A,B,D坐标,求出坐标,求出答案.【详解】由题意得:,解得:,因为离心率,所以,,故双曲线方程为,设,则,,则,所以,则,解得:,故.故选:B6、答案:A【解析】设,表示出,由勾股定理列式计算得,然后在,再由勾股定理列式,计算离心率.【详解】由题意得,,且,如图所示,设,由双曲线的定义可得,,因为,所以,得,所以,在中,,即.故选:A【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围)7、答案:A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A8、答案:D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率