预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届重庆市朝阳中学高二数学第一学期期末调研试题含解析一、单选题(本题共10小题,每题5分,共50分)1、已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线交轴于点.若,则椭圆的离心率是A.B.C.D.2、设实数,满足,则的最小值为()A.5B.6C.7D.83、2019年湖南等8省公布了高考改革综合方案将采取“”模式即语文、数学、英语必考,考生首先在物理、历史中选择1门,然后在思想政治、地理、化学、生物中选择2门,一名同学随机选择3门功课,则该同学选到历史、地理两门功课的概率为()A.B.C.D.4、已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A.B.C.D.5、已知关于的不等式的解集是,则的值是()AB.5C.D.76、如图,,是平面上两点,且,图中的一系列圆是圆心分别为,的两组同心圆,每组同心圆的半径分别是1,2,3,…,A,B,C,D,E是图中两组同心圆的部分公共点.若点A在以,为焦点的椭圆M上,则()A.点B和C都在椭圆M上B.点C和D都在椭圆M上C.点D和E都在椭圆M上D.点E和B都在椭圆M上7、变量与的数据如表所示,其中缺少了一个数值,已知关于的线性回归方程为,则缺少的数值为()22232425262324▲2628A.24B.25C.25.5D.268、若抛物线焦点与椭圆的右焦点重合,则的值为A.B.C.D.9、已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A.B.C.D.10、已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1B.=1C.=1D.=1二、填空题(本题共6小题,每题5分,共30分)11、已知向量,,,则___________.12、已知等差数列的公差为1,且是和的等比中项,则前10项的和为___________.13、在平面直角坐标系中,直线与的交点为,以为圆心作圆,圆上的点到轴的最小距离为(Ⅰ)求圆的标准方程;(Ⅱ)过点作圆的切线,求切线的方程14、已知直线l是抛物线()的准线,半径为的圆过抛物线的顶点O和焦点F,且与l相切,则抛物线C的方程为___________;若A为C上一点,l与C的对称轴交于点B,在中,,则的值为___________.15、圆关于y轴对称的圆的标准方程为___________.16、直线与圆交于A、B两点,当弦AB的长度最短时,则三角形ABC的面积为________三、解答题(本题共5小题,每题12分,共60分)17、命题p:关于x的不等式对一切恒成立;命题q:函数在上递增,若为真,而为假,求实数的取值范围18、已知直线,直线经过点且与直线平行,设直线分別与x轴,y轴交于A,B两点.(1)求点A和B的坐标;(2)若圆C经过点A和B,且圆心C在直线上,求圆C的方程.19、如图,在四棱锥S−ABCD中,已知四边形ABCD是边长为的正方形,点S在底面ABCD上的射影为底面ABCD的中心点O,点P在棱SD上,且△SAC的面积为1(1)若点P是SD的中点,求证:平面SCD⊥平面PAC;(2)在棱SD上是否存在一点P使得二面角P−AC−D的余弦值为?若存在,求出点P的位置;若不存在,说明理由20、如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB、PC的中点(1)求证:平面MND⊥平面PCD;(2)求点P到平面MND的距离21、公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】由于BF⊥x轴,故,设,由得,选D.考点:椭圆的简单性质2、答案:A【解析】作出不等式组的可行域,利用目标函数的几何意义,利用数形结合的思想求解即可.【详解】画出约束条件的平面区域,如下图所示:目标函数可以化为,函数可以看成由函数平移得到,当直线经过点时,直线的截距最小,则,故选:3、答案:A【解析】先由列举法计算出基本事件的总数,然后再求出该同学选到历史、地理两门功课的基本事件的个数,基本事件个数比即为所求概率.【详解】由题意,记物理、历史分别为、,从中选择1门;记思想政治、地理、化学、生物为、、、,从中选择2门;则该同学随机选择3门功课,所包含的基本事件有:,,,,,,,,,,,,共个基本事件;该同学选到历史、地理两门功课所包含的基本事件有:,,共个基本事件;该同学选到物理、地理两门功课的概率为.故选:A.【点睛】本题考查求古典概型的概率,属于基础题型.4、答案:D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点