预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届重庆市朝阳中学高二数学期末经典试题含解析一、单选题(本题共10小题,每题5分,共50分)1、等比数列的第4项与第6项分别为12和48,则公比的值为()A.B.2C.或2D.或2、已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1B.C.D.3、若双曲线经过点,且它的两条渐近线方程是,则双曲线的离心率是()A.B.C.D.104、将上各点的纵坐标不变,横坐标变为原来的2倍,得到曲线C,若直线l与曲线C交于A,B两点,且AB中点坐标为M(1,),那么直线l的方程为()A.B.C.D.5、已知抛物线的焦点与椭圆的一个焦点重合,过坐标原点作两条互相垂直的射线,,与分别交于,则直线过定点()A.B.C.D.6、已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④B.②③C.①②D.③④7、口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4B.0.5C.0.6D.0.758、已知函数在上是增函数,则实数的取值范围是()A.B.C.D.9、若双曲线(,)的焦距为,且渐近线经过点,则此双曲线的方程为()A.B.C.D.10、已知椭圆的短轴长和焦距相等,则a的值为()A.1B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、与同一条直线都相交的两条直线的位置关系是________12、设分别是平面的法向量,若,则实数的值是________13、已知三个数2,,6成等比数列,则实数______14、在棱长为1的正方体中,___________.15、年月我国成功发射了第一颗人造地球卫星“东方红一号”,这颗卫星的运行轨道是以地心(地球的中心)为一个焦点的椭圆.已知卫星的近地点(离地面最近的点)距地面的高度约为,远地点(离地面最远的点)距地面的高度约为,且地心、近地点、远地点三点在同一直线上,地球半径约为,则卫星运行轨道是上任意两点间的距离的最大值为___________16、若数列的前n项和,则其通项公式________三、解答题(本题共5小题,每题12分,共60分)17、设椭圆的左、右焦点分别为,.点满足.(1)求椭圆的离心率;(2)设直线与椭圆相交于,两点,若直线与圆相交于,两点,且,求椭圆的方程.18、已知过抛物线的焦点F且斜率为1的直线l交C于A,B两点,且(1)求抛物线C的方程;(2)求以C的准线与x轴的交点D为圆心且与直线l相切的圆的方程19、已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)20、在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分21、已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C2、答案:C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.3、答案:A【解析】由已知设双曲线方程为:,代入求得,计算即可得出离心率.【详解】双曲线经过点,且它的两条渐近线方程是,设双曲线方程为:,代入得:,.所以双曲线方程为:..双曲线C的离心率为故选:A4、答案:A【解析】先根据题意求出曲线C的方程,然后利用点差法求出直线l的斜率,从而可求出直线方程【详解】设点为曲线C上任一点,其在上对应在的点为,则,得,所以,所以曲线C的方程为,设,则,两方程相减整理得,因为AB中点坐标为M(1,),所以,即,所以,所以,所以直线l的方程为,即,故选:A5、答案:A【解析】由椭圆方程可求得坐标,由此求得抛物线方程;设,与抛物线方程联立可得韦达定理的形式,根据可得,由此构造方程求得,根据直线过定点的求法可求得定点.【详解】由椭圆方程知其焦点坐标为,又抛物线焦点,,解得:,则抛物线的方程为,由题意知:直线斜率不为,可设,由得:,则,即,设,,则,,,,,解得:或;又与坐标原点不重合,,,当时,,直线恒过定点.故选:A.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于或的一元二次方程的形式;