预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届河南省郑州市河南实验中学高二数学期末学业水平测试试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设为可导函数,且满足,则曲线在点处的切线的斜率是A.B.C.D.2、直线的斜率是方程的两根,则与的位置关系是()A.平行B.重合C.相交但不垂直D.垂直3、执行如图所示的程序框图,若输入的的值为3,则输出的的值为()A.3B.6C.9D.124、已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A.B.C.D.5、抛物线的焦点坐标为()A.B.C.D.6、经过点作圆的弦,使点为弦的中点,则弦所在直线的方程为A.B.C.D.7、函数直线与的图象相交于A、B两点,则的最小值为()A.3B.C.D.8、若抛物线的焦点与椭圆的右焦点重合,则的值为A.B.C.D.9、两条平行直线与之间的距离为()A.B.C.D.10、已知两个向量,,且,则的值为()A.-2B.2C.10D.-10二、填空题(本题共6小题,每题5分,共30分)11、已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______12、直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____13、已知函数(1)求函数的最小正周期和单调递增区间;(2)在锐角三角形中,角,,所对的边分别为,,,若,,,求的面积14、阿波罗尼斯与阿基米德、欧几里得被称为亚历山大时期的数学三巨匠.“阿波罗尼斯圆”是他的代表成果之一:平面上动点P到两定点A,B的距离之比满足(且,t为常数),则点的轨迹为圆.已知在平面直角坐标系中,,,动点P满足,则P点的轨迹为圆,该圆方程为_________;过点的直线交圆于两点,且,则_________15、如图所示,在正方体中,点是底面内(含边界)的一点,且平面,则异面直线与所成角的取值范围为____________16、过点的直线与双曲线交于两点,且点恰好是线段的中点,则直线的方程为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值18、曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.19、如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱中点(1)求证:;(2)求直线AB与平面所成角的正弦值20、已知等差数列的前n项和为,且,(1)求数列的通项公式;(2)若,求k的值21、已知椭圆C:的离心率为,点为椭圆C上一点(1)求椭圆C的方程;(2)若M,N是椭圆C上的两个动点,且的角平分线总是垂直于y轴,求证:直线MN的斜率为定值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式2、答案:C【解析】由韦达定理可得方程的两根之积为,从而可知直线、的斜率之积为,进而可判断两直线的位置关系【详解】设方程的两根为、,则直线、的斜率,故与相交但不垂直故选:C3、答案:A【解析】模拟执行程序框图,根据输入数据,即可求得输出数据.【详解】当时,不满足,故,即输出的的值为.故选:.4、答案:B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B5、答案:C【解析】先把抛物线方程化为标准方程,求出即可求解【详解】由,有,可得,抛物线的焦点坐标为故选:C6、答案:A【解析】由题知为弦AB的中点,可得直线与过圆心和点的直线垂直,可求的斜率,然后用点斜式求出的方程【详解】由题意知圆的圆心为,,由,得,∴弦所在直线的方程为,整理得.选A.【点睛】本题考查直线与圆的位置关系,直线的斜率,直线的点斜式方程,属于基础题7、答案:C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得