预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届河南省扶沟县高二数学第二学期期末综合测试试题含解析一、单选题(本题共10小题,每题5分,共50分)1、某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38B.40C.46D.582、如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为,的面积为,并向正方形中随机投掷个点,用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率为附表:A.B.C.D.3、如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A.B.C.D.4、设函数,则()A.4B.5C.6D.75、已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上B.在轴上C.当时在轴上D.当时在轴上6、在空间四边形中,,,,且,则()A.B.C.D.7、若、、为空间三个单位向量,,且与、所成的角均为,则()A.5B.C.D.8、在中,,,且BC边上的高为,则满足条件的的个数为()A.3B.2C.1D.09、为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A.B.C.D.10、某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是.A.90B.75C.60D.45二、填空题(本题共6小题,每题5分,共30分)11、已知三个数2,,6成等比数列,则实数______12、“”是“”的________条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选择一项填空.)13、已知复数对应的点在复平面第一象限内,甲、乙、丙三人对复数的陈述如下为虚数单位:甲:;乙:;丙:,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数______14、已知抛物线的顶点为O,焦点为F,动点B在C上,若点B,O,F构成一个斜三角形,则______15、已知椭圆和双曲线有相同的焦点和,设椭圆和双曲线的离心率分别为,,为两曲线的一个公共点,且(为坐标原点).若,则的取值范围是______16、过抛物线焦点的直线交抛物线于A,B两点,若线段AB中点的纵坐标为4,则线段AB的长度为___________.三、解答题(本题共5小题,每题12分,共60分)17、已知椭圆.离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说明理由18、已知各项均为正数的等比数列的前n项和为,且,(1)求数列的通项公式;(2)设,求数列的前n项和19、已知椭圆的焦距为,点在椭圆上.过点的直线l交椭圆于A,B两点.(1)求该椭圆的方程;(2)若点P为直线上的动点,记直线PA,PM,PB的斜率分别为,,.求证:,,成等差数列.20、已知圆:,定点,Q为圆上的一动点,点P在半径CQ上,且,设点P的轨迹为曲线E.(1)求曲线E的方程;(2)过点的直线交曲线E于A,B两点,过点H与AB垂直的直线与x轴交于点N,当取最大值时,求直线AB的方程.21、如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,E为BP的中点,,(1)证明:平面PAD;(2)求平面EAC与平面PAC夹角的余弦值参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.2、答案:D【解析】每个点落入中的概率为,设落入中的点的数目为,题意所求概率为故选D3、答案:B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面