预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共24页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届浙江台州市书生中学高二数学第一学期期末检测模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列2、在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()AB.C.D.63、已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1B.2C.4D.64、若函数在上有且仅有一个极值点,则实数的取值范围为()A.B.C.D.5、已知正实数x,y满足4x+3y=4,则的最小值为()A.B.C.D.6、函数区间上有()A.极大值为27,极小值为-5B.无极大值,极小值为-5C.极大值为27,无极小值D.无极大值,无极小值7、已知抛物线过点,则抛物线的焦点坐标为()A.B.C.D.8、等差数列中,已知,则()A.36B.27C.18D.99、执行如图所示的程序框图,如果输入,那么输出的a值为()A.3B.27C.-9D.910、已知点分别是椭圆的左、右焦点,点P在此椭圆上,,则的面积等于A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知椭圆的左、右焦点分别为,,上顶点为A,直线与椭圆C的另一个交点为B,则的面积为___________.12、若直线与直线相互平行,则实数___________.13、已知抛物线的焦点为F,过F的直线l交抛物线C于AB两点,且,则p的值为______14、在长方体中,M、N分别是BC、的中点,若,则______15、如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.16、曲线在处的切线方程是________.三、解答题(本题共5小题,每题12分,共60分)17、某城市地铁公司为鼓励人们绿色出行,决定按照乘客经过地铁站的数量实施分段优惠政策,不超过12站的地铁票价如下表:乘坐站数票价(元)246现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过12站,且他们各自在每个站下地铁的可能性是相同的.(1)若甲、乙两人共付费6元,则甲、乙下地铁的方案共有多少种?(2)若甲、乙两人共付费8元,则甲比乙先下地铁的方案共有多少种?18、已知圆.(1)求过点M(2,1)的圆的切线方程;(2)直线过点且被圆截得的弦长为2,求直线的方程;(3)已知圆的圆心在直线y=1上,与y轴相切,且与圆相外切,求圆的标准方程.19、已知椭圆:,的左右焦点,是双曲线的左右顶点,的离心率为,的离心率为,点在上,过点E和,分别作直线交椭圆于,和,点,如图.(1)求,的方程;(2)求证:直线和的斜率之积为定值;(3)求证:为定值.20、已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为求椭圆的标准方程;过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围21、如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B2、答案:C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.3、答案:C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.4、答案:C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.5、答案:A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a