预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届天水市重点中学高二数学第一学期期末经典试题含解析一、单选题(本题共10小题,每题5分,共50分)1、2019年末,武汉出现新型冠状病毒肺炎(COVID—19)疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为p(0<p<1)且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为f(p),当p=p0时,f(p)最大,则p0=()A.B.C.D.2、已知,,直线:,:,且,则的最小值为()A.2B.4C.8D.93、已知等比数列的前项和为,首项为,公比为,则()A.B.C.D.4、已知实数,满足不等式组,则的最小值为()A2B.3C.4D.55、与的等差中项是()A.B.C.D.6、已知双曲线的右焦点为,以为圆心,以为半径的圆与双曲线的一条渐近线交于,两点,若(为坐标原点),则双曲线的离心率为().A.B.C.D.7、几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或8、在等比数列中,,公比,则()A.B.6C.D.29、曲线在点处的切线过点,则实数()A.B.0C.1D.210、已知且,则下列不等式恒成立的是A.B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、在的展开式中项的系数为______.(结果用数值表示)12、圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______13、若方程表示的曲线是圆,则实数的k取值范围是___________.14、数列中,,,,则______15、已知F1,F2是双曲线C:﹣y2=1(a>0)的左、右焦点,点P是双曲线C上的任意一点(不是顶点),过F1作∠F1PF2的角平分线的垂线,垂足为H,O是坐标原点.若|F1F2|=6|OH|,则双曲线C的方程为____16、若不同的平面的一个法向量分别为,,则与的位置关系为___________.三、解答题(本题共5小题,每题12分,共60分)17、为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.求甲、乙两人所付滑雪费用相同的概率;18、双曲线的离心率为,虚轴的长为4.(1)求的值及双曲线的渐近线方程;(2)直线与双曲线相交于互异两点,求的取值范围.19、如图1是,,,,分别是边,上两点,且,将沿折起使得,如图2.(1)证明:图2中,平面;(2)图2中,求二面角的正切值.20、某莲藕种植塘每年的固定成本是2万元,每年最大规模的种植量是8万千克,每种植1万千克莲藕,成本增加0.5万元.种植万千克莲藕的销售额(单位:万元)是(是常数),若种植2万千克莲藕,利润是1.5万元,求:(1)种植万千克莲藕利润(单位:万元)为的解析式;(2)要使利润最大,每年需种植多少万千克莲藕,并求出利润的最大值.21、已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】解设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,再利用基本不等式法求解.【详解】解:设事件A为:检测了5人确定为“感染高危户”,设事件B为:检测了6人确定为“感染高危户”,则,,所以,令,则,,当且仅当,即时,等号成立,即,故选:A2、答案:C【解析】由,可求得,再由,利用基本不等式求出最小值即可.【详解】因为,所以,即,因为,,所以,当且仅当,即时等号成立,所以的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式