预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届天水市重点中学高二数学第一学期期末质量跟踪监视模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、设,,,则,,大小关系是A.B.C.D.2、已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A.B.C.D.3、已知,则()A.B.C.D.4、方程有两个不同的解,则实数k的取值范围为()A.B.C.D.5、若正实数、满足,且不等式有解,则实数取值范围是()A.或B.或C.D.6、下列结论正确的个数为()①若,则;②若,则;③若,则;④若,则A.4B.3C.2D.17、若数列满足,,则数列的通项公式为()A.B.C.D.8、已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3B.4C.6D.119、数列的一个通项公式为()A.B.C.D.10、已知等比数列满足,则()A.168B.210C.672D.1050二、填空题(本题共6小题,每题5分,共30分)11、已知等比数列的前n和为,若成等差数列,且,,则的值为_______________12、的展开式中的系数为_________13、椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____14、已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________15、将一枚质地均匀的骰子,先后抛掷次,则出现向上的点数之和为的概率是________.16、抛物线的准线方程为_____三、解答题(本题共5小题,每题12分,共60分)17、△ABC的三个顶点分别为(1)求△ABC的外接圆M的方程;(2)设直线与圆M交于两点,求|PQ|的值18、已知函数f(x)+alnx,实数a>0(1)当a=2时,求函数f(x)在x=1处的切线方程;(2)讨论函数f(x)在区间(0,10)上的单调性和极值情况;(3)若存在x∈(0,+∞),使得关于x的不等式f(x)<2+a2x成立,求实数a的取值范围19、已知椭圆的右焦点为F(,0),且点M(-,)在椭圆上.(1)求椭圆的方程;(2)直线l过点F,且与椭圆交于A,B两点,过原点O作l的垂线,垂足为P,若,求λ的值.20、已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由21、排一张有6个歌唱节目和5个舞蹈节目的演出节目单.(1)任何两个舞蹈节目不相邻的排法有多少种?(2)歌唱节目与舞蹈节目间隔排列的方法有多少种?参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题2、答案:A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.3、答案:C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C4、答案:C【解析】转化为圆心在原点半径为1的上半圆和表示恒过定点的直线始终有两个公共点,结合图形可得答案.【详解】令,平方得表示圆心在原点半径为1的上半圆,表示恒过定点的直线,方程有两个不同的解即半圆和直线要始终有两个公共点,如图圆心到直线的距离为,解得,当直线经过时由得,当直线经过时由得,所以实数k的取值范围为.故选:C.5、答案:A【解析】将代数式与相乘,展开后利用基本不等式可求得的最小值,可得出关于实数的不等式,解之即可.【详解】因为正实数、满足,则,即,所以,,当且仅当时,即当时,等号成立,即的最小值为,因为不等式有解,则,即,即,解得或.故选:A.II卷6、答案:D【解析】根据常数函数的导数为0,可判断①;根据幂函数的求导公式,可判断②;根据指数函数以及对数函数的求导公式,可判断③④.【详解】由得:,故①错误;对于,,故,故②正确;对于,则,故③错误;对于,则,故④错误,故选:D7、答案:B【解析】根据等差数列的定义和通项公式直接得出结果.【详解】因为,所以数列是等差数列,公差为1,所以.故选:B8、答案:A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以