预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2025届天水市重点中学高二数学期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为()A.B.C.D.2、已知,则()A.B.1C.D.3、抛物线的焦点坐标是()A.B.C.D.4、正方体中,E、F分别是与的中点,则直线ED与所成角的余弦值是()A.B.C.D.5、已知命题:,;命题:,.则下列命题中为真命题的是()A.B.C.D.6、设函数,若为奇函数,则曲线在点处的切线方程为()A.B.C.D.7、直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A.B.C.D.8、饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A.B.C.D.9、函数的单调递减区间为()A.B.C.D.10、如图,一个圆锥形的空杯子上面放着一个半径为4.5cm的半球形的冰淇淋,若冰淇淋融化后正好盛满杯子,则杯子的高()A.9cmB.6cmC.3cmD.4.5cm二、填空题(本题共6小题,每题5分,共30分)11、下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.512、已知等比数列满足,,公比,则的前2021项和______13、已知函数在处有极值2,则______.14、已知是双曲线的左、右焦点,点M是双曲线E上的任意一点(不是顶点),过作角平分线的垂线,垂足为N,O是坐标原点.若,则双曲线E的渐近线方程为__________15、用1,2,3,4排成的无重复数字的四位数中,其中1和2不能相邻的四位数的个数为___________(用数字作答).16、已知向量,,若,则实数=________.三、解答题(本题共5小题,每题12分,共60分)17、已知平面内两点.(1)求过点且与直线平行的直线的方程;(2)求线段的垂直平分线方程.18、在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值19、已知抛物线C:上一点到焦点F的距离为2(1)求实数p的值;(2)若直线l过C的焦点,与抛物线交于A,B两点,且,求直线l的方程20、已知抛物线,直线与交于两点且(为坐标原点)(1)求抛物线的方程;(2)设,若直线的倾斜角互补,求的值21、已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的值;(2)是否存在常数,使得对于定义域内的任意,恒成立?若存在,求出的值;若不存在,请说明理由参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】先求得点坐标,然后求得的角平分线所在的直线的方程.【详解】,直线的斜率为,由于直线,与l的夹角相等,则的角平分线所在的直线的斜率为,所以所求直线方程为.故选:A2、答案:B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B3、答案:C【解析】化为标准方程,利用焦点坐标公式求解.【详解】抛物线的标准方程为,所以抛物线的焦点在轴上,且,所以,所以抛物线的焦点坐标为.故选:C4、答案:A【解析】以A为原点建立空间直角坐标系,求出E,F,D,D1点的坐标,利用向量求法求解【详解】如图,以A为原点建立空间直角坐标系,设正方体的边长为2,则,,,,,直线与所成角的余弦值为:.故选:A【点睛】本题考查异面直线所成角的求法,属于基础题.5、答案:C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C6、答案:C【解析】利用函数的奇偶性求出,求出函数的导数,根据导数的几何意义,利用点斜式即可求出结果【详解】函数的定义域为,若为奇函数,则则,即,所以,所以函数,可得;所以曲线在点处的切线的斜率为,则曲线在点处的切线方程为,即故选:C7、答案:A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.8、答案:B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每