预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共25页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年安徽省安庆市桐城中学高二数学第一学期期末联考模拟试题含解析一、单选题(本题共10小题,每题5分,共50分)1、在等比数列中,,且,则t=()A.-2B.-1C.1D.22、《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A.B.C.D.3、已知椭圆(a>b>0)的离心率为,则=()A.B.C.D.4、已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A.B.C.D.5、在等比数列中,是和的等差中项,则公比的值为()A.-2B.1C.2或-1D.-2或16、若点P在曲线上运动,则点P到直线的距离的最大值为()A.B.2C.D.47、如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点8、已知直线m经过,两点,则直线m的斜率为()A.-2B.C.D.29、双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为()A.B.2C.D.10、若正方体ABCD­A1B1C1D1的棱长为1,则直线A1C1到平面ACD1的距离为()A.1B.C.D.二、填空题(本题共6小题,每题5分,共30分)11、已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.12、双曲线的离心率为__________________.13、已知抛物线:,斜率为且过点的直线与交于,两点,且,其中为坐标原点(1)求抛物线的方程;(2)设点,记直线,的斜率分别为,,证明:为定值14、已知正数满足,则的最小值是__________.15、在中,,,,则__________.16、若不等式的解集是,则的值是___________.三、解答题(本题共5小题,每题12分,共60分)17、《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值18、如图,四棱锥的底面是正方形,平面平面,E为的中点(1)若,证明:;(2)求直线与平面所成角的余弦值的取值范围19、四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.20、已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求21、已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点,已知点的坐标为,若,求直线的方程参考答案一、单选题(本题共10小题,每题5分,共50分)1、答案:A【解析】先求出,利用等比中项求出t.【详解】在等比数列中,,且,所以所以,即,解得:.当时,,不符合等比数列的定义,应舍去,故.故选:A.2、答案:C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力3、答案:D【解析】由离心率得,再由转化为【详解】因为,所以8a2=9b2,所以故选:D.4、答案:A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.5、答案:D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.6、答案:A【解析】由方程确定曲线的形状,然后转化为求圆上的点到直线距离的最大值【详解】由曲线方程为知曲线关于轴成轴对称,关于原点成中心对称图形,在第一象限内,方程化为,即,在第一象限内,曲线是为圆心,为半径的圆在第一象限的圆弧(含坐标轴上的点),实际上整个曲线就是这段圆弧及其