预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一、选择题1.(2015·兰州模拟)如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图像表示该容器中水面的高度h和时间t之间的关系,其中不正确的有()A.1个B.2个C.3个D.4个[解析]将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的变化率上反映出来,图①应该是匀速的,故下面的图像不正确,②中的变化率是越来越慢的,正确;③中的变化规律是逐渐变慢再变快,正确;④中的变化规律是逐渐变快再变慢,也正确,故只有①是错误的.故选A.[答案]A2.(2015·广州模拟)在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.992.013.98y-0.990.010.982.00则对x,y最适合的拟合函数是()A.y=2xB.y=x2-1C.y=2x-2D.y=log2x[解析]根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D.[答案]D3.(2014·北京高考)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟[解析]由题意得eq\b\lc\{\rc\(\a\vs4\al\co1(0.7=9a+3b+c,,0.8=16a+4b+c,0.5=25a+5b+c))解之得eq\b\lc\{\rc\(\a\vs4\al\co1(a=-0.2,b=1.5,,c=-2,))∴p=-0.2t2+1.5t-2=-0.2(t-3.75)2+0.8125,即当t=3.75时,p有最大值.[答案]B4.(2013·陕西高考)在如图所示的锐角三角形空地中,欲建一个面积不小于300m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是()A.[15,20]B.[12,25]C.[10,30]D.[20,30][解析]利用三角形相似求出矩形的边长,再利用面积关系求解自变量的取值范围.设矩形的另一边长为ym,则由三角形相似知,eq\f(x,40)=eq\f(40-y,40),∴y=40-x.∵xy≥300,∴x(40-x)≥300,∴x2-40x+300≤0,∴10≤x≤30.[答案]C5.(2015·石家庄模拟)在翼装飞行世界锦标赛中,某翼人空中高速飞行,如图反映了他从某时刻开始的15分钟内的速度v(x)与时间x的关系,若定义“速度差函数”u(x)为时间段[0,x]内的最大速度与最小速度的差,则u(x)的图像是()[解析]由题意可得,当x∈[0,6]时,翼人做匀加速运动,v(x)=80+x,“速度差函数”u(x)=eq\f(40,3)x.当x∈[6,10]时,翼人做匀减速运动,速度v(x)从160开始下降,一直降到80,u(x)=160-80=80.当x∈[10,12]时,翼人做匀减速运动,v(x)从80开始下降,v(x)=180-10x,u(x)=160-(180-10x)=10x-20.当x∈[12,15]时,翼人做匀加速运动,“速度差函数”u(x)=160-60=100,结合所给的图像,故选D.[答案]D6.某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8∶00第一次服药,为保证疗效,则第二次服药最迟的时间应为()A.上午10∶00B.中午12∶00C.下午4∶00D.下午6∶00[解析]当x∈[0,4]时,设y=k1x,把(4,320)代入,得k1=80,∴y=80x.当x∈[4,20]时,设y=k2x+b.把(4,320),(20,0)代入得eq\b\lc\{\rc\(\a\vs4\al\co1(4k2+b=320,,20k2+b=0.))解得eq\b\lc\{\rc\(\a\vs4\al\co1(k2=-20,,b=400.))∴y=400-20x.∴y=f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(80x,0≤x≤4,,400-20x,4<x≤20.))由y≥240,得eq\b\lc\{\rc\(\a\vs4\al\co1(0≤x≤4,,80x≥240,))或eq\b\lc\{\rc\(\a\vs4\al\co1(4<x≤20,,400-20x≥240.))∴3≤x≤8.故第二