预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

函数值域的求法及应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、图象法、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力典例讲解例1设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm的空白,左右各留5cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?技巧与方法本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决解设画面高为xcm,宽为λxcm,则λx2=4840,设纸张面积为Scm2,则S=(x+16)(λx+10)=λx2+(16λ+10)x+160,将x=代入上式得S=5000+44(8+),当8=,即λ=<1)时S取得最小值此时高x==88cm,宽λx=×88=55cm如果λ∈[],可设≤λ1<λ2≤,则由S的表达式得又≥,故8->0,∴S(λ1)-S(λ2)<0,∴S(λ)在区间[]内单调递增从而对于λ∈[],当λ=时,S(λ)取得最小值答画面高为88cm,宽为55cm时,所用纸张面积最小如果要求λ∈[],当λ=时,所用纸张面积最小例2已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围技巧与方法解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得(1)解当a=时,f(x)=x++2∵f(x)在区间[1,+∞上为增函数,∴f(x)在区间[1,+∞上的最小值为f(1)=(2)解法一在区间[1,+∞上,f(x)=>0恒成立x2+2x+a>0恒成立设y=x2+2x+a,x∈[1,+∞∵y=x2+2x+a=(x+1)2+a-1递增,∴当x=1时,ymin=3+a,当且仅当ymin=3+a>0时,函数f(x)>0恒成立,故a>-3解法二f(x)=x++2,x∈[1,+∞当a≥0时,函数f(x)的值恒为正;当a<0时,函数f(x)递增,故当x=1时,f(x)min=3+a,当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)(1)证明当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M(2)当m∈M时,求函数f(x)的最小值(3)求证对每个m∈M,函数f(x)的最小值都不小于1(1)证明先将f(x)变形f(x)=log3[(x-2m)2+m+],当m∈M时,m>1,∴(x-m)2+m+>0恒成立,故f(x)的定义域为R反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+>0,令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M(2)解析设u=x2-4mx+4m2+m+,∵y=log3u是增函数,∴当u最小时,f(x)最小而u=(x-2m)2+m+,显然,当x=m时,u取最小值为m+,此时f(2m)=log3(m+)为最小值(3)证明当m∈M时,m+=(m-1)++1≥3,当且仅当m=2时等号成立∴log3(m+)≥log33=1巩固练习1函数y=x2+(x≤-)的值域是()A(-∞,-B[-,+∞C[,+∞D(-∞,-]2函数y=x+的值域是()A(-∞,1B(-∞,-1CRD[1,+∞3一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长)4某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位百台)(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大?(3)年产量多少时,企业才不亏本?