一种基于网格优化的支持向量机分类器参数选择的蜂蜜检测方法.pdf
茂学****23
亲,该文档总共22页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
一种基于网格优化的支持向量机分类器参数选择的蜂蜜检测方法.pdf
一种基于网格优化的支持向量机分类器参数选择的蜂蜜检测方法,其特征在于网格优化利用穷举法,在预先估计的取值范围内按一定的步长对范围内的所有点进行逐个搜索,确定最终最优参数,以2为底数,在2-4到210间对r和c进行穷举搜索。当c=5.2780,r=0.1088时,训练集样本判别准确率最高,为96.25%,在此条件下,建立模型,利用预测集进行检验。最终判别准确率为96.20%,样本76/79,其中油菜蜜23/23,椴树蜜16/17,洋槐蜜37/39。
一种基于遗传算法的支持向量机分类器参数选择的蜂蜜检测方法.pdf
一种基于遗传算法的支持向量机分类器参数选择的蜂蜜检测方法,其特征在于所述遗传算法的基本运算过程:1)数据初始化:设置最大进化代数,随机生成的个体数及其所构成的群体。选择个体数20个,最大迭代次数100代。2)个体评价:计算群体中各个个体的适应度,本申请中适应度为样本分类的准确率。3)选择运算:利用选择算子对群体中的各个个体进行随机选择。本申请中利用轮盘赌法结合个体评价的准确率对个体进行选择,从而将适应度较高的个体信息可以遗传到下一代。4)交叉运算:利用交叉算子对个体中的个体进行叠加重组产生新的个体,集成上
一种基于粒子群算法的支持向量机分类器参数选择的蜂蜜检测方法.pdf
一种基于粒子群算法的支持向量机分类器参数选择的蜂蜜检测方法,其特征在于初始化随机个体,通过计算当前个体适应度函数值与群体最优适应值间差距进行个体变更,相比于遗传算法,粒子群算法收敛更快,在6代左右就达到最优点,优化结果为:训练集最高准确率为91.25%,c=32.3362,r=0.0100,此条件下,预测准确率为88.61%,其中油菜蜜21/23,椴树蜜14/17,洋槐蜜36/39。
一种基于支持向量机算法优化的蜂蜜检测方法.pdf
一种基于支持向量机算法优化的蜂蜜检测方法,选择5种不同蜜源作为研究样品,分别为:1)油菜蜜,采自西部地区的重庆涪陵区和永川区;2)荔枝蜜,采自华南地区的广西南宁;3)荆条蜜,采自华北地区的北京密云等地;4)洋槐蜜,采自华东的山东莱阳;5)椴树蜜,采自东北的吉林敦化及黑龙江哈尔滨;利用气敏传感器阵列与不同挥发性成分的吸附差异对待测样品蜂蜜进行检测;其中蜂蜜挥发性成分与传感器特征吸附后,改变半导体传感器表层电流强度,通过数字转换,获得各样品的响应曲线,从而对样品进行检测分析利用提取出的电子鼻特征信息建立支持向
基于粒子群优化算法的支持向量机参数选择.docx
基于粒子群优化算法的支持向量机参数选择基于粒子群优化算法的支持向量机参数选择摘要:支持向量机(SupportVectorMachine,SVM)作为一种强大的机器学习方法,在数据分类和回归问题中取得了良好的表现。然而,SVM的性能很大程度上依赖于选择合适的参数,如惩罚参数C和核函数的参数。本论文提出了一种基于粒子群优化算法(ParticleSwarmOptimization,PSO)的方法来选择SVM的参数。通过使用PSO算法,我们能够对SVM参数进行全局搜索,以获得最佳参数取值。实验表明,利用PSO算法