预览加载中,请您耐心等待几秒...
1/4
2/4
3/4
4/4

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

江苏省吴中区东山中学高二数学测试卷(理科)考试时间:120分钟满分:150分一选择题(8小题,每小题5分,共40分)1.在△ABC中,若A,a,则等于()A.2B.C.D.2.已知集合,,若R,则实数t的取值范围是()A.B.C.D.3.不等式的解集是()A.B.C.D.4.若,则的取值范围是()A.B.C.D.5.一房地产开发商将他新建的20层商品房的房价按下列方法定价:先定一个基价a元/m2,再根据楼层的不同上下浮动,一层的价格()元/m2,二层的价格为a元/m2,三层的价格为()元/m2,第n层(n4)的价格为[]元/m2,其中a>0,d>0.则该商品房各层房价的平均价是()元/m2.()A.aB.C.D.6.一个等差数列共3m项,前2m项的和是100,后2m项的和是200,则中间m项的和是()A.125B.100C.75D.507.在1到104之间所有形如和的数(n∈N*),它们各自之和的差的绝对值为()A.1631B.6542C.16382D.98408.已知数列,都是公差为1的等差数列,其首项分别为,,且,,∈N*.(n∈N*),设则数列的前10项和等于()A.55B.70C.85D.100二填空题(6小题,每小题5分,共30分)9.已知△ABC的三个内角为A,B,C,所对的三条边的长分别为a,b,c,设向量,.若,则角C的大小为10.若R,恒成立,则a的取值范围是11.若数列的前n项和,则12.若数列中,,且(n∈N*),则数列的通项13.定义”等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,则这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列是等和数列,且,公和为5,那么的值为,且这个数列的前21项的和的值为14.已知,则不等式的解集是三解答题(6小题,共80分)15.(12分)设是定义在上的增函数,.(1)求证:;(2)解不等式.16.(13分)顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付一次,在购买的第12个月将货款全部付清,月利率0.5%,按复利计算,该顾客每月应付款多少元?(精确到1元)17.(13分)已知△ABC中,,,.(1)求BC边的长;(2)记AB的中点为D,求中线CD的长.18.(14分)解关于x的不等式.19.(14分)已知二次函数的图像经过坐标原点,且,,数列的前项和为Sn,点(n∈N*)均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项的和,求,并求使得对所有n∈N*都成立的最小正整数m.20.(14分)已知(且),设(n∈N*)是首项为4,公差为2的等差数列.(1)若为常数,求证:{an}成等比数列;(2)设,若前项和是Sn,当时,求Sn;(3)令,问是否存在,使得{an}中每一项恒小于后面的项,若存在,求出a的范围;若不存在,说明理由.[参考答案]12345678ACACBCBC9.10.11.12.13.3,5214.15.(1)令得(2)原不等式化为,依题意得原不等式的解集为(5,6].16.设顾客第月等额付款元,则解得元.17.(1)由得,所以,由正弦定理(2),,由余弦定理,18.当时解得,当时,原不等式化为.所以当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式的解集为.19.(1)设,则解得即.由可得.(2)由(1)得,所以.要使恒成立,心须,所以.20.(1),为常数,故是等比数列.(2)当时,.令两式相减得(3).要使对于一切成立即对于一切成立.当时对一切成立.当时,对一切成立,只要故的取值范围或.