预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共19页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年安徽省合肥一中、合肥六中、北城中学联考高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.已知双曲线﹣=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=13.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.4.设l、m、n为不同的直线,α、β为不同的平面,有如下四个命题,其中正确命题的个数是()①若α⊥β,l⊥α,则l∥β②若α⊥β,l⊂α,则l⊥β③若l⊥m,m⊥n,则l∥n④若m⊥α,n∥β且α∥β,则m⊥n.A.4B.3C.2D.15.直线x+(a2+1)y+1=0(a∈R)的倾斜角的取值范围是()A.[0,]B.[,π)C.[0,]∪(,π)D.[,)∪[,π)6.如果圆(x﹣a)2+(y﹣a)2=8上总存在两个点到原点的距离为,则实数a的取值范围是()A.(﹣3,﹣1)∪(1,3)B.(﹣3,3)C.[﹣1,1]D.(﹣3,﹣1]∪[1,3)7.已知M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对于所有的m∈R,均有M∩N≠∅,则b的取值范围是()A.B.C.D.8.如图,在直三棱柱A1B1C1﹣ABC中,,AB=AC=A1A=1,已知G与E分别是棱A1B1和CC1的中点,D与F分别是线段AC与AB上的动点(不包括端点).若GD⊥EF,则线段DF的长度的取值范围是()A.[,1)B.[,2)C.[1,)D.[,)9.已知A,B是球O的球面上两点,∠AOB=60°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为,则球O的表面积为()A.36πB.64πC.144πD.256π10.如图抛物线C1:y2=2px和圆C2:+y2=,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,B,C,D四点,则•的值为()A.B.C.D.P211.椭圆的两焦点为F1(﹣c,0)、F2(c,0),P为直线上一点,F1P的垂直平分线恰过F2点,则e的取值范围为()A.B.C.D.12.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A1CD,所成二面角A1﹣CD﹣B的平面角为α,则()A.∠A1CB≥αB.∠A1DB≤αC.∠A1DB≥αD.∠A1CB≤α二、填空题(本大题共4小题,每小题5分,共20分,把答案填写在答题纸相应位置上).13.若命题“∃x∈R,使得ax2+ax+1≤0”为假命题,则实数a的取值范围为.14.在平面直角坐标系内,已知B(﹣3,3),C(3,﹣3),且H(x,y)是曲线x2+y2=1上任意一点,则•的值为.15.已知正方体ABCD﹣A1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于.16.椭圆上任意两点P,Q,若OP⊥OQ,则乘积|OP|•|OQ|的最小值为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤).17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要非充分条件,求实数m的取值范围.18.如图所示,四棱锥P﹣ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.(1)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成的角的正弦值.19.已知圆C:x2+y2+2x﹣4y+3=0.(1)若不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;(2)从圆C外一点P(x,y)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求点P的轨迹方程.20.椭圆的离心率为,右焦点到直线的距离为,过M(0,﹣1)的直线l交椭圆于A,B两点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l交x轴于N,,求直线l的方程.21.在多面体ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F为AB的中点.(Ⅰ)求证:EF∥平面ACD;(Ⅱ)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大小.22.如图,已知离心率为的椭圆C:+=1(a>b>0)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆C于不同的两点A、B.(1)求椭圆C的方程.(2)证明:直线MA、MB与x轴围成一个等腰三角形.2015-2016学年安徽省合肥一中、