预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共30页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题25平面向量的基本定理和向量的坐标运算本专题特别注意:1.平面向量基本定理的应用问题2.基本定理的两条路径法表示向量问题3.数形结合的应用4.向量于线性规划问题等综合问题5.向量的坐标表示及运算性质6.向量共线与垂直的坐标表示7.向量与数列的综合8.向量与解析几何的综合【学习目标】1.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示.2.会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示平面向量共线和垂直的条件.【方法总结】1.向量的坐标表示主要依据平面向量的基本定理,平面向量eq\o(――→,\s\up7(对应))实数对(x,y),任何一个平面向量都有唯一的坐标表示,但是每一个坐标所表示的向量却不一定唯一.也就是说,向量的坐标表示和向量不是一一对应的关系,但和起点为原点的向量是一一对应的关系。2.已知向量的始点和终点坐标求向量的坐标时,一定要搞清方向,用对应的终点坐标减去始点坐标.本讲易忽略点有二:一是易将向量的终点坐标误认为是向量坐标;二是向量共线的坐标表示易与向量垂直的坐标表示混淆.3.向量的坐标表示,实际上是向量的代数表示,在引入向量的坐标表示后,可以使向量运算完全代数化,把关于向量的代数运算与数量的代数运算联系起来,从而把数与形紧密结合起来,这样很多几何问题,特别像共线、共点等较难问题的证明,就转化为熟知的数量运算,也为运用向量坐标运算的有关知识解决一些物理问题提供了一种有效方法.高考模拟:一、单选题1.在如图的平面图形中,已知,则的值为A.B.C.D.0【答案】C【解析】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.详解:如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.2.在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=+,则+的最大值为A.3B.2C.D.2【答案】A【解析】如图所示,建立平面直角坐标系.设,易得圆的半径,即圆C的方程是,,若满足,则,,所以,设,即,点在圆上,所以圆心到直线的距离,即,解得,所以的最大值是3,即的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.3.若直线与函数,图像交于异于原点不同的两点,且点,若点满足,则()A.B.2C.4D.6【答案】C【解析】分析:由直线x+ky=0过原点,函数f(x)是定义域R上的奇函数;知直线x+ky=0与函数f(x)图象的交点A,B关于原点对称,得出,再由向量相等列方程组求出m、n的值,再求m+n.由直线x+ky=0(k≠0)与函数f(x)的图象交于不同的两点A,B,则A、B关于原点对称,∴,又点C(9,3),,∴,即(m﹣9,n﹣3)=(﹣2m,﹣2n),∴,解得,∴m+n=4.故答案为:C点睛:(1)本题主要考查了奇函数的性质与平面向量的应用问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是先要研究函数f(x)的奇偶性,后面才能迎刃而解.研究函数的问题,要联想到利用函数的性质(奇偶性、单调性和周期性)来分析解答问题.4.一直线与平行四边形中的两边分别交于,且交其对角线于,若,则()A.B.C.D.【答案】A点睛:该题考查的是有关平面向量基本定理的问题,在解题的过程中,理清点M的位置是关键,所以显得尤为重要,之后利用向量的关系求得结果.5.设双曲线的右焦点为,过点作轴的垂线交两渐近线于两点,且与双曲线在第一象限的交点为,设为坐标原点,若,,则双曲线的离心率为()A.B.C.D.【答案】A【解析】分析:先根据已知求出,再代入求出双曲线的离心率.详解:由题得双曲线的渐近线方程为,设F(c,0),则因为,所以.所以解之得因为,所以故答案为:A点睛:(1)本题主要考查双曲线的几何性质和离心率的求法,意在考查学生对这些基础知识的掌握能力.(2)解答本题的关键是根据求出.6.已知等差数列的公差为,前项和为,且,则()A.B.C.D.【答案】B【解析】分析:利用向量的线性运算把用表示出来后,由向量相等得出数列的递推关系.详解:∵,∴,即,又,∴,∴,∴.故选B.点睛:等差数列问题可用基本量法求解,即把已知条件用首项和公差表示并求出即可得通项公式和前项和公式.基本量法的两个公式:,.7.已知中,,,则()A.B.C.D