预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共12页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

专题1集合【三年高考】1.【2016高考江苏1】已知集合则.【答案】【解析】试题分析:.故答案应填:【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考江苏1】已知集合,,则集合中元素的个数为_______.【答案】5【解析】,,则集合中元素的个数为5个.【考点定位】集合运算3.【2014江苏1】已知集合,,则.【答案】【解析】由题意得.4.【2012江苏1】已知集合A={1,2,4},B={2,4,6},则A∪B=__________.【答案】{1,2,4,6}【解析】根据集合的并集运算法则得,A∪B={1,2,4,6}.5.【2013江苏4】集合{-1,0,1}共有__________个子集.【答案】8【解析】由于集合{-1,0,1}有3个元素,故其子集个数为23=8..6.【2016高考新课标1理数改编】设集合,,则.【答案】考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.7.【2016高考新课标3理数改编】设集合,则.【答案】(0,2][3,+)【解析】试题分析:由解得或,所以,所以.考点:1、不等式的解法;2、集合的交集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.8.【2016年高考四川理数改编】设集合,Z为整数集,则中元素的个数是.【答案】5【解析】试题分析:由题意,,故其中的元素个数为5.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.9.【2016高考山东理数改编】设集合则=.【答案】【解析】试题分析:,,则.考点:1.指数函数的性质;2.解不等式;3.及集合的运算.【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.本题与求函数值域、解不等式等相结合,增大了考查的覆盖面.10.【2016高考新课标2理数改编】已知集合,,则.【答案】考点:集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.11.【2016年高考北京理数改编】已知集合,,则.【答案】【解析】试题分析:由,得.考点:集合交集.【名师点睛】1.首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合,,三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.12.【2016高考浙江理数改编】已知集合则.【答案】(-2,3]考点:1、一元二次不等式;2、集合的并集、补集.【易错点睛】解一元二次不等式时,的系数一定要保证为正数,若的系数是负数,一定要化为正数,否则很容易出错.【2017年高考命题预测】纵观2014-2016各地高考试题,集合是每年高考考试的重点,每年高考必考的知识,江苏高考题型一般是填空题,占5分,主要是考查集合的概念,集合的关系及集合的运算,而集合的运算是高考考试的重点,且集合在历年的高考中考查的形式与内容几乎没有变化,故在2017年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习,关于集合2017高考备考主要有以下几点建议:1.涉及本单元知识点的高考题,综合性大题不多.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型(如集合与映射,集合与自然数集,集合与不等式,集合与方程等,充分条件与必要条件与三角、立几、解几中的知识点的结合等);2.重视“数形结合”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头