预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

用心爱心专心2011《金版新学案》高三数学一轮复习集合随堂检测文北师大版(本栏目内容,学生用书中以活页形式单独装订成册!)一、选择题(每小题6分,共36分)1.集合A={1,2,a},B={2,3,a2},C={1,2,3,4},a∈R,则集合(A∩B)∩C不可能是()A.{2}B.{1,2}C.{2,3}D.{3}【解析】若a=-1,(A∩B)∩C={1,2};若a=3,则(A∩B)∩C={2,3}若a≠-1且a≠3,则(A∩B)∩C={2},故选D.【答案】D2.(2009全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个【解析】A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8},故选A.【答案】A3.(2009年广东卷)已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k=1,2,…}的关系的韦恩(Venn)图如右图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个【解析】M={x|-1≤x≤3},M∩N={1,3},有2个.【答案】B4.给出以下集合:①M={x|x2+2x+a=0,a∈R};②N={x|-x2+x-2>0};③P={x|y=lg(-x)}∩{y|y=lg(-x)};④Q={y|y=x2}∩{y|y=x-4},其中一定是空集的有()A.0个B.1个C.2个D.3个【解析】在集合M中,当Δ=4-4a≥0时,方程有解,集合不是空集;而Q={y|y=x2}∩{y|y=x-4}={y|y≥0}∩{y|y∈R}={y|y≥0},所以不是空集;在P中,P={x|y=lg(-x)}∩{y|y=lg(-x)}={x|x<0}∩R={x|x<0},不是空集;在N中,由于不等式-x2+x-2>0⇔x2-x+2<0,Δ=-7<0,故无解,因此,只有1个一定是空集,所以选B.【答案】B5.如右图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A.{x|0<x<2}B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2}【解析】依据定义,A#B就是将A∪B除去A∩B后剩余的元素所构成的集合.对于集合A,求的是函数y=eq\r(2x-x2)的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1},依据定义得:A#B={x|0≤x≤1或x>2}.【答案】D6.定义一种集合运算A⊗B={x|x∈(A∪B),且x∉(A∩B)},设M={x||x|<2},N={x|x2-4x+3<0},则M⊗N所表示的集合是()A.(-∞,-2]∪[1,2)∪(3,+∞)B.(-2,1]∪[2,3)C.(-2,1)∪(2,3)D.(-∞,-2]∪(3,+∞)【解析】M={x|-2<x<2},N={x|1<x<3},所以M∩N={x|1<x<2},M∪N={x|-2<x<3},故M⊗N=(-2,1]∪[2,3).【答案】B二、填空题(每小题6分,共18分)7.已知集合A={x∈R|ax2+2x+1=0,a∈R}只有一个元素,则a的值为________.【解析】当a=0时,A={-eq\f(1,2)};当a≠0时,若集合A只有一个元素,则4-4a=0,即a=1.综上,当a=0或a=1时,集合A只有一个元素.【答案】0或18.(2009年天津卷)设全集U=A∪B={x∈N+|lgx<1},若A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.【解析】A∪B={x∈N+|lgx<1}={1,2,3,4,5,6,7,8,9},A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.【答案】{2,4,6,8}9.设全集I={2,3,a2+2a-3},A={2,|a+1|},∁IA={5},M={x|x=log2|a|},则集合M的所有子集是________.【解析】∵A∪(∁IA)=I,∴{2,3,a2+2a-3}={2,5,|a+1|},∴|a+1|=3,且a2+2a-3=5,解得a=-4或a=2.∴M={log22,log2|-4|}={1,2}.【答案】∅,{1},{2},{1,2}三、解答题(共46分)10.(15分)设集合A={x2,2x-1,-4},B={x-5,1-x,9},若A∩B={9},求A∪B.【解析】由9∈A,可得x2=9或2x-1=9,解得