一种低温低压制备超细氮化铝粉末的方法.pdf
一条****彩妍
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
一种低温低压制备超细氮化铝粉末的方法.pdf
本发明提供了一种低温低压制备超细氮化铝粉末的方法,包括:(a)制备前驱体混合物:将粒径为0.8µm的氧化铝粉末、碳含量为44%的高纯水溶性淀粉及粒径为1~3µm的烧结助剂充分混合,得到混合均匀的前驱体混合物;(b)低温低压合成:将混合均匀的前驱体混合物放入烧结炉中,排除空气后通入氮气,控制烧结炉的压力为10kPa~50kPa,反应温度为1250~1300℃,保温5h;(c)脱碳处理:将烧结炉中制备出的氮化铝粉末于700℃空气氛围下保温2h,得到灰白色氮化铝粉末。本发明可有效降低制备温度,反应时间短,纯度高
一种制备超细碳氮化钛的方法.pdf
本发明属于金属陶瓷材料制备领域,提供了一种制备超细碳氮化钛的方法,该方法为先将纳米TiO2与有机碳源球磨混合,然后冷压制成块料;将所述块料装入真空感应炉中,抽真空至炉内压力小于等于50Pa,然后升温至300℃-800℃,保温0.5-2h;再升温至1000℃~1900℃,保温0.5~2h,保温过程中不断抽真空;保温结束后停止抽真空,通入氮气,使炉内压力为1.1-1.2个大气压,保温1~4h,使原料充分氮化,然后降温、取出块料,破碎、球磨、分级,得到费氏粒度小于1微米的超细碳氮化钛粉体材料。本发明所制得的Ti
低温碳热还原氮化法制备高稳定性超细氮化铝的方法.pdf
本发明提供了一种低温碳热还原氮化法制备高稳定性超细氮化铝的方法,包括(a)制备前驱体混合物:将粒径为0.3~1.5µm的氧化铝粉末、粒径为13nm的炭黑及粒径为3µm的烧结助剂混合,得到混合均匀的前驱体混合物;(b)低温合成:将混合均匀的前驱体混合物放入烧结炉中,排除空气后通入氨气与氢气的混合气,1250~1350℃保温2~5h;(c)脱碳处理:将所得氮化铝粉末于700℃空气氛围下脱碳2h;(d)AlN表面处理:将步骤(c)所得到的氮化铝粉末在羟基亚乙基二磷酸和磷酸二乙胺的混合溶液中浸泡5~10h,即得所
超细碳化钽粉末的制备方法.pdf
本发明涉及一种超细碳化钽粉末的制备方法,其技术方案是将购买得到的浆状的氢氧化钽经烘箱于180~250℃烘干,得到纳米级的氢氧化钽,再将纳米级的氢氧化钽与碳黑混合经缓慢升温在1200~1300℃真空碳化6~14h得到粉末粒度小于0.6微米、化学成分符合硬质合金制备要求的超细碳化钽(TaC)粉末。本发明提供的超细碳化钽粉末制备方法具有流程短、操作易于实现、节能的优点。
一种超细碳氮化钛粉的制备方法.pdf
本发明公开一种超细碳氮化钛粉的制备方法,属于纳米陶瓷粉体制备技术领域,包括如下步骤:S1.将钛白粉与炭黑在加入了石蜡的无水乙醇中磨细并混合均匀得混合料;S2.将所述混合料干燥后,进行制粒得混合料粒;S3.将所述混合料粒送入连续石墨碳管炉进行碳氮化处理,通过控制反应温度和反应气氛得到碳氮化钛粗品;S4.将所述碳氮化钛粗品除去游离碳和杂质,得到碳氮化钛产品。本发明制备碳氮化钛具有成本低、收率高、产品纯度高的优点。