几种求极限方法的总结.doc
可爱****乐多
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
几种求极限方法的总结.doc
几种求极限方法的总结摘要极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过对求极限的学习和深入研究,我总结出十二种求极限的方法.关键词定义夹逼定理单调有界无穷小洛必达泰勒公式数列求和定积分定积分数列1用定义求极限根据极限的定义:数列{}收敛a,〉0,N,当n〉N时,有-a〈.例1用定义证明证明:要使不等式=成立:解得n,取N=,于是N=,,有即2利用两边夹定理求极限例2求极限解:设则有:同时有:,于是由.有已知:∴=13利用函数的单调有界性求极限实数的连续性定理:单调有界数列必有极限.例3
几种求极限方法的总结.docx
几种求极限方法的总结摘要极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过SKIPIF1<0对求极限的学习和深入研究,我总结出十二种求极限的方法.关键词定义夹逼定理单调有界无穷小洛必达泰勒公式数列求和定积分定积分数列1用定义求极限SKIPIF1<0根据极限的定义:数列{SKIPIF1<0}收敛SKIPIF1<0SKIPIF1<0a,SKIPIF1<0〉0,SKIPIF1<0NSKIPIF1<0SKIPIF1<0,当n〉N时,有SKIP
几种求极限方法及总结.docx
几种求极限方法的总结摘要极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过对求极限的学习和深入研究,我总结出十二种求极限的方法.关键词定义夹逼定理单调有界无穷小洛必达泰勒公式数列求和定积分定积分数列1用定义求极限根据极限的定义:数列{}收敛a,〉0,N,当n〉N时,有-a〈.例1用定义证明证明:要使不等式=成立:解得n,取N=,于是N=,,有即2利用两边夹定理求极限例2求极限解:设则有:同时有:,于是由.有已知:∴=13利用函数的单调有界性求极限实数的连续性定理:单调有界数列必有极限.例3
求极限的几种方法.doc
../NUMPAGES19.一、求函数极限的方法1、运用极限的定义例:用极限定义证明:证:由取则当时,就有由函数极限定义有:2、利用极限的四则运算性质若(I)(II)(III)若B≠0则:(IV)(c为常数)上述性质对于例:求解:=3、约去零因式(此法适用于例:求解:原式=====4、通分法(适用于型)例:求解:原式===5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x)满足:(I)(II)(M为正整数)则:例:求解:由而故原式=6
求极限的几种方法.docx
SKIPIF1<0求函数极限的方法和技巧摘要:本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。关键词:函数极限引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。主要内容SKIPIF1<0一、求函数极限的方法1、运用极限的定义例:用极限定义证明:SKIPIF1<0SKIPIF1<