预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2.1.1椭圆及其标准方程一、教学目标:知识与技能:理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标.过程与方法:让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题.情感态度与价值观:通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度.二、教学重点与难点重点:椭圆的标准方程难点:椭圆标准方程的推导三、教学过程:(一)讲授新课1.演示定义:我们把叫做椭圆,这两个定点F1、F2叫做椭圆的,两个焦点之间的距离叫做椭圆的,通常用2c(c>0)表示,而这个常数通常用2a表示,椭圆用集合表示为。观察:你能从中找出a,c,表示的线段吗?我们推导出焦点在X轴的椭圆的标准方程为:思考:焦点在Y轴上椭圆的标准方程?.小结:同学们完成下表椭圆的定义图形标准方程焦点坐标a,b,c的关系焦点位置的判断(二)题组训练:题组一:1.在椭圆中,a=,b=,焦距是焦点坐标是,______.焦点位于________轴上2.如果方程表示焦点在X轴的椭圆,则实数m的取值范围是.题组二:求适合下列条件的椭圆的标准方程1.a=4,b=1,焦点在x轴上.2.a=4,c=,焦点在坐标轴上题组三:1.已知两定点(-3,0),(3,0),若点P满足,则点P的轨迹是,若点P满足,则点P的轨迹是.2.P为椭圆上一点,P到一个焦点的距离为4,则P到另一个焦点的距离为3.椭圆,过焦点F1的直线交椭圆于A,B两点,则的周长为(三)课堂小结:1.椭圆的定义,应注意什么问题?2.求椭圆的标准方程,应注意什么问题?作业:1.如果点M(x,y)在运动过程,总满足关系式:,点M的轨迹是什么曲线?写出它的方程.2.已知△ABC的一边长,周长为16,求顶点A的轨迹方程.2.1.2椭圆的简单几何性质教学目标:[来源:学。科。网](1)通过对椭圆标准方程的讨论,理解并掌握椭圆的几何性质;(2)能够根据椭圆的标准方程求焦点、顶点坐标、离心率并能根据其性质画图;(3)培养学生分析问题、解决问题的能力,并为学习其它圆锥曲线作方法上的准备.教学重点:椭圆的几何性质.通过几何性质求椭圆方程并画图教学难点:椭圆离心率的概念的理解.教学方法:讲授法课型:新授课教学工具:多媒体设备一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程.二、讲授新课:(一)通过提出问题、分析问题、解决问题激发学生的学习兴趣,在掌握新知识的同时培养能力.[在解析几何里,是利用曲线的方程来研究曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来研究其几何性质.][来源:Z,xx,k.Com]已知椭圆的标准方程为:1.范围[我们要研究椭圆在直角坐标系中的范围,就是研究椭圆在哪个区域里,只要讨论方程中x,y的范围就知道了.]问题1方程中x、y的取值范围是什么?由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式≤1,≤1即x2≤a2,y2≤b2所以|x|≤a,|y|≤b即-a≤x≤a,-b≤y≤b这说明椭圆位于直线x=±a,y=±b所围成的矩形里。2.对称性复习关于x轴,y轴,原点对称的点的坐标之间的关系:点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y);问题2在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发现?在曲线的方程里,如果以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。如果以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关于y轴对称。]如果同时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称呢?[曲线关于原点对称。]归纳提问:从上面三种情况看出,椭圆具有怎样的对称性?椭圆关于x轴,y轴和原点都是对称的。这时,椭圆的对称轴是什么?[坐标轴]椭圆的对称中心是什么?[原点]椭圆的对称中心叫做椭圆的中心。3.顶点[研究曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,常常需要求出曲线与x轴,y轴的交点坐标.]问题3怎样求曲线与x轴、y轴的交点?在椭圆的标准方程里,令x=0,得y=±b。这说明了B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。令y=0,得x=±a。这说明了A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。因为x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。线段A1A2,B1B2分别叫做椭圆的长轴和短轴。它们