导数——平均变化率与瞬时变化率.doc
仙人****88
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
导数平均变化率与瞬时变化率.docx
【同步教育信息】一.本周教学内容:导数——平均变化率与瞬时变化率w二.本周教学目标:1、了解导数概念的广阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的几何意义.三.本周知识要点:(一)平均变化率1、情境:观察某市某天的气温变化图2、一般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(二)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线c上一点作割线PQ,当点Q沿着曲线c无限地趋近于点P,割线P
导数——平均变化率与瞬时变化率.docx
本讲教育信息】一.教学内容:导数——平均变化率与瞬时变化率二.本周教学目标:1、了解导数概念的广阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的几何意义.三.本周知识要点:(一)平均变化率1、情境:观察某市某天的气温变化图2、一般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(二)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线c上一点作割线PQ,当点Q沿着曲线c无限地趋近于点P,割线PQ无限地
导数——平均变化率与瞬时变化率.doc
导数——平均变化率与瞬时变化率一.教学内容:导数——平均变化率与瞬时变化率二.本周教学目标:1、了解导数概念的广阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的几何意义.三.本周知识要点:(一)平均变化率1、情境:观察某市某天的气温变化图2、一般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(二)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线c上一点作割线PQ,当点Q沿着曲线c无限地趋近于点P
导数——平均变化率与瞬时变化率.doc
导数——平均变化率与瞬时变化率一.教学内容:导数——平均变化率与瞬时变化率二.本周教学目标:1、了解导数概念的广阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的几何意义.三.本周知识要点:(一)平均变化率1、情境:观察某市某天的气温变化图2、一般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(二)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线c上一点作割线PQ,当点Q沿着曲线c无限地趋近于点P
平均变化率瞬时变化率.docx
1.1.1平均变化率二、教学重点、难点重点:平均变化率的实际意义和数学意义难点:平均变化率的实际意义和数学意义三、教学过程一、问题情境1、情境:现有南京市某年3月和4月某天日最高气温记载.时间3月18日4月18日4月20日日最高气温3.5℃18.6℃33.4℃观察:3月18日到4月18日与4月18日到4月20日的温度变化,用曲线图表示为:(理解图中A、B、C点的坐标的含义)t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)210问题1:“气温陡增”是一句生