预览加载中,请您耐心等待几秒...
1/2
2/2

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

把数学史融入课堂教学中口窦海玲常常有老师抱怨在面对学上的一件大事。主要内容是用极可以启发学生怎样去解决这两个生对数学兴趣每况愈下的状态或限方法研究函数的变化规律包问题把解决这些问题的方法告者诸如“学习数学有什么用”之括微分法和积分法以及它们的诉学生这样学生心理就很明类的疑问时自己往往心有余而实际应用。它的创立主要是为了确我为什么要学习这部分内力不足;在开始一个新知识点的处理世纪科技领域归纳出来的容它的产生是在怎样的一个背教学时试图设计一段精彩的课题例如。当时科学界重视研景下产生的。把数学家分析、归“新课引入”时常感到“巧妇难究光学和透镜设计。这就需要研纳现象发现问题提出新概为无米之炊”。在面对学生诸如究光线射人透镜的投射角而投念、新理论和解决问题的全过程“为什么直角坐标所分平面四部射角是光线与曲线的法线所成的展示给学生。同样我们在讲“定分称作象限时”、“为什么圆要角由于法线与切线是相互垂直积分”概念前也同样可以先把分成等分”、“韦达一开始是的所以归结为求曲线的切线问它产生的背景显示出来求如何发现根与系数关系的”之类题。它是引入微分学三大类问题曲边梯形的面积;求变速直的问题时他们往往猝不及防。之一另两类问题分别是求速线运动的路程。老师把这些历史陷入尴尬境地。事实证明无论度、求最大值。微积分的创始知识在讲授内容前先告诉学生是自身对于完美的课堂教学的追人首先是牛顿和莱布尼兹。不让学生知道从何而来引向何求还是来自学生的对于知识的过在这之前微积分实际上已经处。给学生布下强烈探求知识的种种疑问。都是与数学的发展史历经了近一个世纪的酝酿。牛顿境地促使知识的升温。使学生有联系的。教师缺乏数学史以和莱布尼兹的功绩在于:提炼了清楚地意识到概念形成的时代背至使他的课堂教学暗淡无光使微积分的基本概念和算法给微