预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

§5.2平面向量基本定理及坐标表示要点梳理1.两个向量的夹角(1)定义已知两个向量a和b,作=a,=b,则∠AOB=θ叫做向量a与b的夹角.(2)范围向量夹角θ的范围是,a与b同向时,夹角θ=;a与b反向时,夹角θ=.(3)向量垂直如果向量a与b的夹角是,则a与b垂直,记作.2.平面向量基本定理及坐标表示(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个向量,那么对于这一平面内的任意向量a,一对实数1,2,使a=.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组.(2)平面向量的正交分解把一个向量分解为两个的向量,叫做把向量正交分解.(3)平面向量的坐标表示①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y,使a=xi+yj,把有序数对叫做向量a的坐标,记作a=,其中叫a在x轴上的坐标,叫a在y轴上的坐标.②设=xi+yj,则向量的坐标(x,y)就是,即若=(x,y),则A点坐标为,反之亦成立.(O是坐标原点)3.平面向量的坐标运算(1)加法、减法、数乘运算.(2)向量坐标的求法已知A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),即一个向量的坐标等于该向量的坐标减去的坐标.(3)平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0,则a与b共线a=.基础自测1.已知四边形ABCD的顶点A(0,2)、B(-1,-2)、C(3,1),且=2则顶点D的坐标为()A.B.C.(3,2)D.(1,3)解析∵A(0,2),B(-1,-2),C(3,1),∴=(3,1)-(-1,-2)=(4,3).设D(x,y),∵=(x,y-2),=2,∴(4,3)=(2x,2y-4).∴x=2,y=.2.已知a=(4,2),b=(x,3),且a∥b,则x等于()A.9B.6C.5D.3解析∵a∥b,∴12-2x=0,∴x=6.3.已知两点A(4,1),B(7,-3),则与同向的单位向量是()A.B.C.D.解析∵A(4,1),B(7,-3),=(3,-4),∴与同向的单位向量为4.在平行四边形ABCD中,AC为一条对角线,若=(2,4),=(1,3),则等于()A.(-2,-4)B.(-3,-5)C.(3,5)D.(2,4)解析如图所示,(-1,-1),所以(-3,-5).-1题型一平面向量基本定理【例1】如图所示,在平行四边形ABCD中,M,N分别为DC,BC的中点,已知=c,=d,试用c,d表示,.方法二设=a,=b.因M,N分别为CD,BC的中点,所以b,a,c=b+aa=(2d-c)d=a+bb=(2c-d),即=(2d-c),=(2c-d).知能迁移1如图所示,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同两点M、N,若则m+n的值为.解析设=a,=b,(a+b)-同理由∥得=①②①×②整理得m+n=2.答案2题型二向量的坐标运算【例2】已知点A(1,0)、B(0,2)、C(-1,-2),求以A、B、C为顶点的平行四边形的第四个顶点D的坐标.解设D的坐标为(x,y).(1)若是ABCD,则由得(0,2)-(1,0)=(-1,-2)-(x,y),即(-1,2)=(-1-x,-2-y),-1-x=-1,-2-y=2.∴x=0,y=-4.∴D点的坐标为(0,-4)(如图中的D1).(2)若是ADBC,则由得(x,y)-(1,0)=(0,2)-(-1,-2),即(x-1,y)=(1,4).解得x=2,y=4.∴D点坐标为(2,4)(如图中的D2).(3)若是ABDC,则由得(0,2)-(1,0)=(x,y)-(-1,-2),即(-1,2)=(x+1,y+2).解得x=-2,y=0.∴D点的坐标为(-2,0)(如图中的D3).综上所述,以A、B、C为顶点的平行四边形的第四个顶点D的坐标为(0,-4)或(2,4)或(-2,0).探究提高(1)要加强对向量的坐标与该向量起点、终点的关系的理解,以及对坐标运算的灵活应用.(2)向量的坐标运算是向量运算的数量表达形式,更能利用代数知识解决,也是向量被广泛应用的基础.知能迁移2(2009·辽宁)在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知A(-2,0),B(6,8),C(8,6),则D点的坐标为.解析设D点的坐标为(x,y),由题意知,即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2).题型三平行向量的坐标运算【例3】(12分)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).回答下列问题:(1)若(a+kc)∥(2b-a),求实数k;(2)设d=(x,y)满足(d-c)∥(a