预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

3.2.2函数模型的应用实例【思路点拨】由题目可获取以下主要信息:①总成本=固定成本+100x;②收益函数为一分段函数.解答本题可由已知总收益=总成本+利润,知利润=总收益-总成本.由于R(x)为分段函数,所以f(x)也要分段求出,将问题转化为分段函数求最值问题.【解析】(1)设每月产量为x台,则总成本为20000+100x,从而f(x)=【解析】由题意知,x∈[1,100],且x∈N+.(1)P(x)=R(x)-C(x)=(3000x-20x2)-(500x+4000)=-20x2+2500x-4000,x∈[1,100],x∈N+,MP(x)=P(x+1)-P(x)=-20(x+1)2+2500(x+1)-4000-(-20x2+2500x-4000)=2480-40x,x∈[1,100],x∈N+.【解析】(1)现有木材蓄积量200万立方米,经过1年后木材蓄积量为200+200×5%=200(1+5%);经过2年后木材蓄积量为200(1+5%)+200(1+5%)×5%=200(1+5%)2.…经过x年后木材蓄积量为200(1+5%)x.∴y=f(x)=200(1+5%)x.∵x虽以年为单位,但木材每时每刻均在生长,∴x≥0,且x∈R.∴函数的定义域为[0,+∞).x年份0为1999年(附图).作直线y=300,与函数y=200(1+5%)x的图象交于A点,设A(x0,300),则A点的横坐标x0的值就是函数值y=300时(木材蓄积量为300万立方米时)所经过的时间x的值.∵8<x0<9,则取x=9.∴经过9年后林区的木材蓄积量能达到300万立方米.时间/t(2)引进数学符号,建立数学模型:一般设自变量为x,函数为y,并用x表示各种相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即建立数学模型.(3)利用数学的方法对得到的数学模型予以解答,求出结果.(4)将数学问题的解代入实际问题进行核查,舍去不合题意的解,并作答.这些步骤用框图表示如下:2.数据拟合过程中的假设就一般的数学建模来说,是离不开假设的,如果在问题的原始状态下不作任何假设,将所有的变化因素全部考虑进去,对于稍复杂一点的问题就无法下手了,假设的作用主要表现在以下几个方面:(1)进一步明确模型中需要考虑的因素和它们在问题中的作用,通常,初步接触一个问题,会觉得围绕它的因素非常多,经仔细分析筛查,发现有的因素并无实质联系,有的因素是无关紧要的,排除这些因素,问题则越发清晰明朗,在假设时就可以设这些因素不需考虑.(2)降低解题难度,虽然每一个解题者的能力不同,但经过适当的假设就都可以有能力建立数学模型,并且得到相应的解.一般情况下,是先在最简单的情形下组建模型,然后通过不断地调整假设使模型尽可能地接近实际,从而得到更满意的解.【错因】上面解答中x=51/5不为整数,在实际问题中是不可能的,因此x应根据抛物线取与x=51/5接近的整数才符合题意.【正解】设甲地销售x辆,则乙地销售(15-x)辆,则总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30=-0.15(x-10.2)2+45.606.根据二次函数图象和x∈N*,∴当x=10时,获得最大利润L=-0.15×102+3.06×10+30=45.6万元.【答案】B课时作业点击进入链接