几类微分算子积的自伴性.doc
文光****iu
在线预览结束,喜欢就下载吧,查找使用更方便
相关资料
几类微分算子积的自伴性.doc
几类微分算子积的自伴性常微分算子理论给微分方程、经典物理学、现代物理学及其它工程技术学科提供了统一的理论框架,是常微分方程、泛函分析、空间理论及算子理论等理论,方法于一体的综合性,边缘性的数学分支。其研究领域主要包括微分算子的亏指数理论、自伴扩张、谱分析、按特征函数展开、数值方法,以及反问题等许多重要分支,内容丰富。关于微分算子积的自伴性,已经取得了一些结果([22],[23],[24])。本文围绕微分算子领域中的一个重要问题,即自伴性开展研究,做了一些工作如下:利用自伴微分算子的一般构造理论,讨论了一类
几类自共轭微分算子谱的离散性.pptx
几类自共轭微分算子谱的离散性目录添加目录项标题引言微分算子谱研究的意义自共轭微分算子的定义离散谱的特性一维自共轭微分算子的谱一维自共轭微分算子的定义一维自共轭微分算子的离散谱离散性的证明高维自共轭微分算子的谱高维自共轭微分算子的定义高维自共轭微分算子的离散谱离散性的证明自共轭微分算子谱的离散性对物理和工程领域的影响在量子力学中的应用在波动方程和热传导中的应用在控制理论和信号处理中的应用结论与展望对几类自共轭微分算子谱离散性的总结对未来研究的展望感谢观看
几类边界条件中含有特征参数的二阶微分算子乘积算子的自伴性.doc
几类边界条件中含有特征参数的二阶微分算子乘积算子的自伴性近年来边界条件中带特征参数的微分算子受到了越来越多的数学工作者和物理工作者的广泛关注.微分算子的自伴性是微分算子理论的重要组成部分,其中关于微分算子积的自伴性研究已有许多成果,但边界条件中含有特征参数的微分算子积的自伴性尚无未发现相关研究成果.本文研究了几类边界条件中含有特征参数的二阶微分算子积算子的自伴性,研究工作包括三部分.第一部分研究了边界条件中含有特征参数的特殊二阶微分算子的方幂算子的自伴性,研究方法是将此问题放在了一个与之相关的Hilber
两区间向量微分算子自伴域的描述.doc
两区间向量微分算子自伴域的描述本文主要对两区间向量微分算子自伴扩张问题展开研究.以一区间向量微分算子自伴扩张为基础,采用直和理论将一区间向量微分算子自伴域描述成果推广到两区间上,给出两区间上向量微分算子自伴域的描述.本文首先研究两区间Sturm-Liouville向量微分算子的自伴扩张.根据亏指数取值的不同,将Sturm-Liouville向量微分算子分为正则型,奇异型两部分,其中奇异型包括一端奇异且为极限圆型,两端奇异且均为极限圆型及中间亏指数情形,并分别给出其自伴扩张域边界条件的刻画.其次,根据直和理
几类微分算子谱的离散性的中期报告.docx
几类微分算子谱的离散性的中期报告微分算子是数学中的一个重要概念,它具有广泛的应用和丰富的数学理论。在研究微分算子的性质时,一个重要的问题是它的谱性质,即微分算子的特征值构成的集合。关于微分算子谱的离散性,目前存在几种不同的研究方法和结果,主要可分为以下几类:1.常系数微分算子的谱离散性对于一般的常系数微分算子,其特征值构成的集合通常是离散的。这是由于常系数微分算子是紧算子,即它把有界集映射到有限维的子空间,从而保证了其特征值的离散性。这一结论已经有很长的历史,并在应用中得到了广泛的应用,包括椭圆型偏微分方