离散傅里叶变换.doc
康佳****文库
亲,该文档总共35页,到这已经超出免费预览范围,如果喜欢就直接下载吧~
相关资料
离散时间信号的傅里叶变换和离散傅里叶变换.docx
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。1.离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{
离散傅里叶变换.doc
第三章离散傅里叶变换离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。§3-1引言一.DFT是重要的变换1.分析有限长
离散傅里叶变换.doc
第3章离散傅里叶变换在第二章讨论了利用序列的傅里叶变换和z变换来表示序列和线性时不变系统的方法,公式分别为:和。对于有限长序列,也可以用序列的傅里叶变换和z变换来分析和表示,但还有一种方法更能反映序列的有限长这个特点,即离散傅叶里变换。这就是我们这一章要讨论的问题。离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。这一章讨论的问题有:傅里叶变换的
离散傅里叶变换.docx
第三章离散傅立叶变换(DFT)3.1引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。为了更好地理解DFT,需要先讨论周期序列的
连续傅里叶变换和离散傅里叶变换.pdf
连续傅里叶变换和离散傅里叶变换--连续傅里叶变换和离散傅里叶变换网上关于从连续傅里叶变换推导出离散傅里叶变换公式的资料好像比较少,博主查阅了不少资料,总结出了一个推导的思路,现在分享给大家。先给出连续傅里叶变换的公式:正变换:image傅里叶逆变换:image下面,再给出离散傅里叶变换的公式:正变换:image逆变换image表面上看,两道公式比较难联系起来,因为连续变换公式的积分限和离散公式的求和范围就有着较大的差异,再者,连续逆变换公式和离散逆变换公式前面的系数也有较大的差别。下面将通过公式推导将这两