预览加载中,请您耐心等待几秒...
1/6
2/6
3/6
4/6
5/6
6/6

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT)和离散傅里叶变换(DFT)相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1.离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率变量。时间序列x[n]的离散时间傅里叶变换定义如下: (1.1) 通常是实变量的复数函数同时也是周期为的周期函数,并且的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。这是由于: (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出: (1.3) 故可以称该式为离散时间傅里叶逆变换(IDTFT),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。 上述定义给出了计算DTFT的方法,对于大多数时间序列其DTFT可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单的封闭形式。而一个序列x[n]的DTFT存在的充要条件是其为绝对可和序列,即: 此时对于所有值有: 1.2离散时间傅里叶变换的性质与线性卷积 序列x[n]的离散时间傅里叶变换的一般性质包括线性、时移、频移、频域微分、调制及卷积等。其中卷积性质可表示为如下形式: 一般来说,序列x[n]和h[n]的卷积和可以定义为如下形式: ,或 卷积和运算满足交换率、结合率以及分配率,可以对卷积和作如下解释:先将序列h[k]反转得到h[-k],然后将h[-k]平移(如果n>0,右移n个抽样周期;如果n<0,左移n个抽样周期)形成序列h[n-k]。然后形成乘积序列v[k]=x[k]h[n-k],把v[k]的全部样本求和即得到卷积和y[n]的第n个样本。上述过程可用下图表示: h[-k] h[n-k] x[k] v[k] y[n] 卷积和运算的示意图 离散时间傅里叶变换的卷积性质表明,序列g[n]和h[n]的线性卷积y[n]的离散时间傅里叶变换可以简单地由它们各自的离散时间傅里叶变换和的积给出。这就为我们提供了一种计算序列g[n]和h[n]的线性卷积y[n]的重要方法:可先计算g[n]和h[n]的离散时间傅里叶变换和,然后将和相乘得到,最后作的离散时间傅里叶逆变换,而逆变换的结果就是y[n]序列。在一些应用中,特别是序列为无限长序列时,基本离散时间傅里叶变换的方法可能比直接卷积计算起来更加方便,尤其是在快速傅里变换技术的应用以后。 在Matlab软件中函数fregz可以用来计算序列的离散时间傅里叶变换在给定离散频率点上的值,其变换序列是以的有理函数来描述的,使用形式为:H=fregz(num,den,w),其中返回值H表示频率响应值,num和den为变换序列的有理函数的分母、分子系数向量(按升幂排列),w为0到之间指定的频率点向量。为得到准确的图形,需要选择大量的频率点。 2.离散傅里叶变换 2.1离散傅里叶变换及其计算 已知定义在的有限长序列x[n]及其离散时间傅里叶变换,通过在轴上(),对均匀抽样得到(抽样点为,): (2.1) 式中所得X[k]为频域上的有限长序列,长度为N,称为时间序列x[n]的离散傅里叶变换(DFT)。若令,则DFT的定义式可表达为: (2.2) 而与此相对,X[k]的离散傅里叶逆变换(IDFT)为: (2.3) 对于序列x[n]的离散傅里叶变换的计算,可以直接用上述定义式计算其N点DFT,也可利用定义的矩阵形式进行计算。由于式(2.2)可用矩阵的形式表示为: (2.4) 其中是N个离散傅里叶变换抽样的向量,,而是N个输入抽样的向量,,矩阵是大小为N×N的离散傅里叶变换矩阵,形式如下: 通过这种矩阵形式的表示来计算序列x[n]的N点DFT将会变得更加直观,并且可通过观察矩阵的规律来达到简化计算的目的。与DFT的矩阵计算方法相对应,IDFT也有类似的矩阵计算: (2.5) 与式(2.4)不同的是矩阵为:,其中表示矩阵的共轭。 当然,如果借助Matlab软件来计算DFT和IDFT将会变得更简便。常用的函数是:fft(x)和ifft(X),用来计算时间序列x[n]的DFT及离散傅里叶抽样序列X[k]的IDFT。在上述函数中可指定输出序列的长度,一般缺省时输出长度与输入序列相等,若指定长度小于输入长度时原序列将被截