预览加载中,请您耐心等待几秒...
1/5
2/5
3/5
4/5
5/5

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整word版)二次根式的化简与求值(完整word版)二次根式的化简与求值(完整word版)二次根式的化简与求值讲义编号:课题二次根式的化简与求值授课时间2012年6月29日星期五12:50-14:50教学目的教学内容一、知识回顾1.形如的代数式叫做二次根式。(即一个的算术平方根叫做二次根式)强调:二次根式被开方数不小于02。二次根式的性质:双重非负性(a≥0),=(a≥0,b≥0)(a≥0,b>0)3。二次根式的运算:二次根式乘法法则(a≥0,b≥0)二次根式除法法则(a≥0,b>0)二次根式的加减:类似于合并同类项,把相同二次根式的项合并.二次根式的混合运算:原来学习的运算律(结合律、交换律、分配律)仍然适用,原来所学的乘法公式(如)仍然适用.二、二次根式的化简与求值技巧所谓转化:解数学题的常用策略.常言道:“兵无常势,水无常形。”我们在解千变万化的数学题时,常常思维受阻,怎么办?运用转化策略,换个角度思考,往往可以打破僵局,迅速找到解题的途径.二次根式也不例外,约分、合并是化简二次根式的两个重要手段,因此我们在化简二次根式时应想办法把题目转化为可以约分和和可以合并的同类根式.现举例说明一些常见二次根式的转化策略。1、巧用公式法例1计算分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为与成立,且分式也成立,故有>0,>0,而同时公式:=—2+,—=,可以帮助我们将和变形,所以我们应掌握好公式可以使一些问题从复杂到简单。解:原式=+=+=2—2二、适当配方法.例2.计算:分析:本题主要应该从已知式子入手发现特点,∵分母含有1+其分子必有含1+的因式,于是可以发现3+2=,且,通过因式分解,分子所含的1+的因式就出来了。解:原式==1+三、正确设元化简法.例3:化简分析:本例主要说明让数字根式转化成字母的代替数字化简法,通过化简替代,使其变为简单的运算,再运用有理数四则运算法则的化简分式的方法化简,例如:,,,正好与分子吻合。对于分子,我们发现所以,于是在分子上可加,因此可能能使分子也有望化为含有因式的积,这样便于约分化简.解:设则2且所以:原式=四、拆项变形法例4,计算分析:本例通过分析仍然要想到,把分子化成与分母含有相同因式的分式。通过约分化简,如转化成:再化简,便可知其答案.解:原式==五、整体倒数法.例5、计算分析:本例主要运用了变倒数后,再运用有关公式:,化简但还要通过折项变形,使其具有公因式。解:设A==所以A=借用整数“1"处理法.例6、计算分析:本例运用很多方面的知识如:1=×,然后再运用乘法分配率,使分子与分母有相同因式,再约分化简。解:原式==恒等变形整体代入结合法分析:本例运用整体代入把x+y与xy的值分别求出来,再运用整体代入法将x+y与xy代入例题中,但一定要把所求多项式进行恒等变形使题中含有x+y与xy的因式,如x-xy+y=(x+y)-3xy,然后再约分化简。例7:已知X=(),y=(),求下列各式的值。(1)x-xy+y;(2)+解:因为X=(),y=(),所以:x+y=,xy=.x-xy+y=(x+y)-3xy=()-3×=+==八、降次收幂法:例8、已知x=2+,求的值。分析:本例运用了使题中2次幂项转化成1次方的项再化简。如例题中把多项式转化为4x-1,这样进行低次幂运算就容易了。解:由x=2+,得x-2=。(x-2)=3整理得:x=4x-1。所以:3x-2x+5=3(4x-1)-2x+5=10(2+)+2=22+1022x-7(2+)—7=2-3,所以原式==42+