预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共14页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

(完整word版)正方形的性质与判定专题练习(完整word版)正方形的性质与判定专题练习(完整word版)正方形的性质与判定专题练习正方形专题训练(含答案)一.选择题(共11小题)1.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()2.)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a23.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定4.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等A.8B.4C.8D.165.正方形的一条对角线长为4,则这个正方形的面积是()6.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°7.顺次连接菱形各边的中点所形成的四边形是()A.等腰梯形B.矩形C.菱形D.正方形8.下列说法中,正确的是()A.相等的角一定是对顶角B.四个角都相等的四边形一定是正方形C.平行四边形的对角线互相平分D.矩形的对角线一定垂直9.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④10.如图,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()A.45°B.50°C.55°D.60°11.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的面积为()A.9B.16C.20D.25二.填空题(共5小题)12.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠AEB=_________度.13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_________度.14.如图,四边形ABCD为正方形,△ADE为等边三角形.AC为正方形ABCD的对角线,则∠EAC=_________度.15.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为_________.16.如图所示,正方形ABCD的周长为16cm,顺次连接正方形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于_________cm,四边形EFGH的面积等于_________cm.三.解答题(共6小题)17.如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.18.如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.19.如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=55°,求∠EGC的大小.20.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.21.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=_________°时,四边形ACED是正方形?请说明理由.22.(2014•随州)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB:AD=_________时,四边形MENF是正方形.一.选择题(共11小题)1.(2014•南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)考点:全等三角形的判定与性质;坐标与图形性质;正方形的性质.菁优网版权所有专题:几何图形问题.分析:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.解答:解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD