预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共49页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

晶体的对称性是晶体的基本性质之一。内部特征格子构造外部现象晶体的几何多面体形态晶体的物理性质化学性质一、对称的概念是宇宙间的普遍现象。是自然科学最普遍和最基本的概念,是建造大自然的密码。对称是指物体或图形中相同部分作有规律的重复。对于晶体外形而言,就是晶面与晶面、晶棱与晶棱、角顶与角顶的有规律重复。二、晶体的对称1.由于晶体都具有格子状构造,而格子状构造就是质点在三维空间周期重复的体现,因此,所以的晶体都是对称的。2.晶体的对称受格子构造规律的限制。即只有符合格子构造规律的对称才能在晶体上出现,因此,晶体对称又是有限的。3.晶体的对称既然取决于格子构造,因此晶体的对称不仅体现在外形上,也体现在物理性质上(光学、力学、热学、电学性质)。4.是晶体的基本性质之一。5.是晶体科学分类的依据。三、晶体的对称操作和对称要素在对晶体的对称研究中,为使晶体上相同部分作有规律重复,必须借助一定的几何要素(点、线、面)进行一定的操作(如反映、旋转、反伸等)才能实现,这些操作称为对称操作(symmetryoperation),在操作中所借助的几何要素,称为对称要素(symmetryelement)。对称面(symmetryplane)对称轴(symmetryaxis)对称中心(centerofsymmetry)倒转轴(rotoinversionaxis)对称面(P)对称面是一个假想的平面,亦称镜面。与之相应的对称操作是此平面的反映。由这个平面将图形平分后成互为镜像的两个相等部分,分别相当于物体本身和它的像。对称面必通过晶体的中心。对称轴(Ln)二次对称轴(two-foldrotation)(L2)三次对称轴(Three-foldrotation)(L3)A.过一对平行晶面的中心B.过一对晶棱的中心C.相对两角顶的连线D.角顶、晶面中心和棱中点任意两个的连线定义:位于晶体几何中心的一个假想的点旋转反伸轴(Lin)值得指出的是,除Li4外,其余各种旋转反伸轴都可以用其它简单的对称要素或它们的组合来代替,其间关系如下:Li1=C,Li2=P,Li3=L3+C,Li6=L3+P但一般我们在写晶体的对称要素时,保留Li4和Li6,而其他旋转反伸轴就用简单对称要素代替。这是因为Li4不能被代替,Li6在晶体对称分类中有特殊意义。但是,在晶体模型上找Li4往往是比较困难的,因为容易误认为L2。我们不能用L2代替Li4,就像我们不能用L2代替L4一样。因为L4高于L2,Li4也高于L2。在晶体模型上找对称要素,一定要找出最高的。16由于晶体是具有格子构造的固体物质,这种质点格子状的分布特点决定了晶体的对称轴只有n=1,2,3,4,6这五种,不可能出现n=5,n>6的情况。为什么呢?1、直观形象的理解:垂直五次及高于六次的对称轴的平面结构不能构成面网,且不能毫无间隙地铺满整个空间,即不能成为晶体结构。2.晶体对称定律数学证明方法:1、至少有一端通过晶棱中点的对称轴只能是几次对称轴?2、一对正六边形的平行晶面之中点的连线,可能是几次对称轴的方位?3、在只有一个高次轴的晶体中,能否有与高次轴斜交的P或L2存在?为什么?四、对称要素的组合对称要素组合定理:22定理2:如果一个对称面P垂直于偶次对称轴Ln(偶),交点必为对称中心:Ln(偶)PLnPC。如L4PL4PC逆定理:如果有一个偶次对称轴Ln(偶)与对称中心C共存,则过C且垂直于该对称轴必有一对称面P,即Ln(偶)CLnPC。或,如果有一个对称面P与对称中心C共存,则过C且垂直于P必有一个Ln(偶),即PCLn(偶)PC这一定理说明了L2、P、C三者中任两个可以产生第三者。因为偶次轴包含L2。定理3:如果有一个对称面P包含对称轴Ln,则必有n个P同时包含Ln,即LnP//LnnP//(相邻的两个P的夹角为Ln基转角的一半);如L3P//L33P//逆定理:两个对称面P相交,其交线必为一对称轴Ln,其基转角为相邻两对称面夹角的两倍,并导出其他n个包含Ln的P。(定理3与定理1类似)思考:两个对称面相交60°,交线处会产生什么对称轴?定理4:如果有一个二次轴L2垂直于旋转反伸轴Lin,或有一个对称面P包含Lin,当n为奇数时,必有n个L2垂直Lin或n个P包含Lin:当n为偶数时,必有和n/2个L2垂直Lin或n/2个P包含Lin;LinL2LinnL2或LinP//LinnP//(n为奇数)LinL2Linn/2L2或LinP//Linn/2P//(n为偶数)定理5如果两个对称轴Ln和Lm以δ角斜交时,围绕Ln必有n个共点且对称分布的Lm;同时,围绕Lm必有m个共点且对称分布的Ln:LnLm=nLmmLn。且任二相邻的Ln与Lm之间的交角均等于δ。有了对称