预览加载中,请您耐心等待几秒...
1/3
2/3
3/3

在线预览结束,喜欢就下载吧,查找使用更方便

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年国考行测备考之数量关系巧解余数问题类别一:特殊余数问题1、条件:余数相同思路:除数的最小公倍数+余数【例1】三位数的自然数P满足:除以4余2,除以5余2,除以6余2,则以下符合条件的自然数P是()。A.120B.122C.121D.123【解析】根据题目条件余数相同,均为余2,而4,5,6的最小公倍数为60,因此数P满足:P=60n+2,(n=0,1,2,3……),而当n=2时,P=122,故答案为B。2、条件:除数和余数的和相同思路:除数的最小公倍数+和(除数加余数的和)【例2】三位数的自然数P满足:除以5余3,除以6余2,除以7余1,则符合条件的自然数P有多少个?()A.3B.2C.4D.5【解析】根据题设,发现除数与余数的和相加均为8,而5,6,7的最小公倍数为210,所以数P满足P=210n+8(n=0,1,2……),而在100至999以内满足条件的自然数有218,428,638,848四个数,故答案为C。3、条件:除数和余数之差相同思路:除数的最小公倍数-差(除数减余数的差)【例3】某校三年级学生进行排队,发现每5人一排多1人,每6人一排多2人,每7人一排3多人,问这个年级至少有多少人?()A.206B.202C.237D.302【解析】观察题干可发现,除数与余数的差均为4,又5,6,7的最小公倍数为210,所以数P满足P=210n-4(n=1,2,3……),当n=1时,P为206,故答案为A。另外,本题可采取代入排除法直接验算,也能快速得到答案。类别二:一般余数问题有时候遇到的余数并不满足以上所有条件,这类问题比以上问题更为麻烦一些,解决它们的一般思路是求出满足题干中两个条件的通项公式,再利用同余特性加以解决。举例如下:【例4】自然数P同时满足除以3余1,除以4余3,除以7余4,求满足这样条件的三位数共有多少个?()A.10B.11C.12D.13【解析】此题为一般余数问题,考虑先取其中两个条件,“除以3余1,除以4余3”,则P=4n+3=3a+1,如果等式两边同时除以3,则左边的余数为n,右边的余数为1,即n=1;故同时满足上述两个条件的最小数为7,则通项为P=12n+7……①;再将①式所得的条件与“除以7余4”的条件结合,即满足题干三个条件的数P=12n+7=7b+4,如果等式两边同时除以7,则左边余5n,右边余4,右边也可认为余25,得到5n=25,n=5,代入①式,得P=67。则满足题干三个条件的数的通项为P=84n+67(n=0,1,2,3……),根据100≦84n+67≦999可求得1≦n≦11,则符合条件的数共有11个,故答案为B。结语:通过以上分析,相信考生对于余数问题有了清晰的思路,那么以后遇到余数问题就能从容解决了。话说回来,如果题目能直接代入排除的,采用代入排除法也不失为一种好的方法。