预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共20页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年福建省莆田市高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=,则|z|=()A.8B.2C.2D.2.已知集合A={x|x2﹣x﹣6>0),B={x|﹣1≤x≤4),则A∩B=()A.[﹣l,3)B.(3,4]C.[﹣1,2)D.(2,4]3.已知函数f(x)=sin(2ωx一)(ω>0)的最小正周期为π,则函数f(x)的图象()A.关于点(,0)对称B.关于直线x=对称C.关于点(﹣,0)对称D.关于直线x=﹣对称4.设M是△ABC所在平面内的一点,若+=2,||=2,则•=()A.﹣1B.1C.﹣2D.25.已知函数有两个零点,则实数a的取值范围为()A.(﹣∞,0)B.(0,1]C.(0,+∞)D.[0,+∞)6.执行如图所示的程序框图,欲使输出的S>11,则输入整数n的最小值为()A.3B.4C.5D.67.盒中共有形状大小完全相同的5个球,其中有2个红球和3个白球.若从中随机取2个球,则概率为的事件是()A.都不是红球B.恰有1个红球C.至少有1个红球D.至多有1个红球8.已知等比数列{an}为递增数列,其前n项和为Sn,若S3=7,a2=2,则a3+a4+a5=()A.B.C.28D.569.已知点P在双曲线=1的右支上,F为双曲线的左焦点,Q为线段PF的中点,O为坐标原点.若|OQ|的最小值为1,则双曲线的离心率为()A.B.C.D.10.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π11.已知F为抛物线y2=4x的焦点,点A,B在抛物线上,O为坐标原点.若+2=0,则△OAB的面积为()A.B.C.D.312.已知函数f(x)=|log3(x+1)|,实数m,n满足﹣1<m<n,且f(m)=f(n).若f(x)在[m2,n]上的最大值为2,则=()A.﹣6B.﹣8C.﹣9D.﹣12二、填空题:本大题共4小题,每小题5分,共20分.13.已知数列{an}满足a1=1,an=an﹣1+2n(n≥2,n∈N*),则a4=______.14.若变量x,y满足约束条件,则z=x﹣y的最小值为______.15.若一个长方体内接于表面积为4π的球,则这个长方体的表面积的最大值是______.16.已知函数f(x)=x2+bx+1满足f(﹣x)=f(x+1),若存在实数t,使得对任意实数x∈[l,m],都有f(x+t)≤x成立,则实数m的最大值为______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A,B,C所对的边分别为a,b,c,且.(1)若cosC=,求cos(A+C);(2)若b+c=5,A=,求△ABC的面积.18.某企业对其生产的一批产品进行检测,得出每件产品中某种物质含量(单位:克)的频率分布直方图如图所示.(1)估计产品中该物质含量的中位数及平均数(同一组数据用该区间的中点值作代表);(2)规定产品的级别如表:产品级别CBA某种物质含量范围[60,70)[70,80)[80,90)若生产1件A级品可获利润100元,生产1件B级品可获利润50元,生产1件C级品亏损50元.现管理人员从三个等级的产品中采用分层抽样的方式抽取10件产品,试用样本估计生产1件该产品的平均利润.19.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD是边长为2的正三角形,PD⊥CD,E,F分别为PC,AD的中点.(1)求证:平面CEF⊥平面ABCD;(2)求三棱锥P﹣BDE的体积.20.动圆P过点M(﹣1,O),且与圆N:x2+y2﹣2x﹣15=0内切,记圆心P的轨迹为曲线τ.(1)求曲线τ的方程;(2)过点M且斜率大于0的直线l与圆P相切,与曲线τ交于A,B两点,A的中点为Q.若点Q的横坐标为﹣,求圆P的半径r.21.已知函数f(x)=ax3﹣x2+x,a∈R.(1)若曲线y=f(x)在x=x0处的切线方程为y=x﹣2,求a的值;(2)若f′(x)是f(x)的导函数,且不等式f′(x)≥xlnx恒成立,求a的取值范围.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程](共1小题,满分0分)23.在直角坐标系xOy中,曲线C的参数方程为,(φ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l1的极坐标方程为ρsin(θ﹣)=,直线l2的极坐标方程为θ=,l1与l2的交点为M.(I)判断点M与曲线C的位置关系;(Ⅱ)点P为曲线C上的任意一点,求|PM|的最大值.[选修4-5:不等式选讲](