预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共29页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

湖南省郴州市2017届高考数学三模试卷(理科)(解析版)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={0,1,2,3,4},B={x|x2﹣2x>0},则A∩B=()A.(2,4]B.[2,4]C.{0,3,4}D.{3,4}2.设z=1﹣i(i是虚数单位),若复数在复平面内对应的向量为,则向量的模是()A.1B.C.D.23.《算法统宗》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有()盏灯.A.14B.12C.8D.104.运行如图所示的程序,若输入x的值为256,则输出的y值是()A.B.﹣3C.3D.5.某地市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知p(80<ξ≤100)=0.35,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取()A.5份B.10份C.15份D.20份6.已知函数f(x)=sinx+3cosx,当x∈[0,π]时,f(x)≥的概率为()A.B.C.D.7.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值,则下面的四个值中不为定值的是()A.点Q到平面PEF的距离B.直线PE与平面QEF所成的角C.三棱锥P﹣QEF的体积D.二面角P﹣EF﹣Q的大小8.已知椭圆C的中心在原点,焦点在x轴上,离心率为,同时椭圆C上存在一点与右焦点关于直线x+y﹣1=0对称,则椭圆C的方程为()A.B.C.D.9.已知函数f(x)=cos(ωx+φ)(ω>0),f'(x)是f(x)的导函数,若f(α)=0,f'(α)>0,且f(x)在区间[α,+α)上没有最小值,则ω取值范围是()A.(0,2)B.(0,3]C.(2,3]D.(2,+∞)10.如图,在边长为4的长方形ABCD中,动圆Q的半径为1,圆心Q在线段BC(含端点)上运动,P是圆Q上及内部的动点,设向量=m+n(m,n为实数),则m+n的取值范围是()A.B.C.D.11.一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.B.C.4πD.12.已知函数,若存在k使得函数f(x)的值域为[0,2],则实数a的取值范围是()A.B.(0,1]C.[0,1]D.二、填空题:本大题共4小题,每小题5分,共20分.13.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为.14.已知的展开式中各项系数的和为2,则该展开式中含x的系数为.15.在直角三角形△ABC中,,,对平面内的任意一点M,平面内有一点D使得,则=.16.已知数列{an}的前n项和为Sn,对任意n∈N+,Sn=(﹣1)nan++n﹣3且(t﹣an+1)(t﹣an)<0恒成立,则实数t的取值范围是.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(12分)如图,在△ABC中,∠B=30°,AC=,D是边AB上一点.(1)求△ABC面积的最大值;(2)若CD=2,△ACD的面积为2,∠ACD为锐角,求BC的长.18.(12分)2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题时百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出频率分布直方图中的a值,并求出这200的平均年龄;(2)现在要从年龄较小的第1,2,3组用分层抽样的方法抽取12人,再从这12人中随机抽取3人赠送礼品,求抽取的3人中至少有1人的年龄在第3组的概率;(3)若要从所有参与调查的人(人数很多)中随机选出3人,记关注民生问题的人数为X,求X的分布列和数学期望.19.(12分)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(Ⅰ)求证:直线l⊥平面PAC;(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.20.(12分)已知抛物线E:y2=8x,圆M:(x﹣2)2+y2=4,点N为抛物线E上的动点,O为坐标原点,