预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共18页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁UA)∩(∁UB)=.2.已知向量,若,则实数m=.3.已知,3sin2α=2cosα,则cos(α﹣π)=.4.函数f(x)=(sinx﹣cosx)2的最小正周期为.5.设α∈,则使幂函数y=xα的定义域为R且为奇函数的所有α的值为.6.若向量,满足||=,||=1,•(+)=1,则向量,的夹角的大小为.7.已知﹣<θ<,且sinθ+cosθ=,则tanθ的值为.8.设且,则f(f(2))=.9.设函数f(x)=3|x|,则f(x)在区间(m﹣1,2m)上不是单调函数,则实数m的取值范围是.10.已知,,则tan(β﹣2α)等于.11.函数f(x)=2sin(πx)﹣,x∈[﹣2,4]的所有零点之和为.12.已知函数f(x)=loga(0<a<1)为奇函数,当x∈(﹣1,a]时,函数f(x)的值域是(﹣∞,1],则实数a+b的值为.13.已知函数(a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列三个命题:①函数f(x)的图象关于x轴上某点成中心对称;②存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;③关于x的方程g(x)=0的解集可能为{﹣4,﹣2,0,3}.则是真命题的有.(不选、漏选、选错均不给分)14.在斜三角形△ABC中,A=45°,H是△ABC的垂心,λ=+,则λ=.二、解答题:本大题共6题,共90分,解答应写出文字说明、证明过程或演算步骤.15.设集合A={2,3,a2+2a﹣3},B={x||x﹣a|<2}(1)当a=2时,求A∩B;(2)若0∈A∩B,求实数a的值.16.已知向量=(4,5cosα),=(3,﹣4tanα)(1)若∥,试求sinα;(2)若⊥,且α∈(0,),求cos(2α﹣)的值.17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象上两个相邻的最值点为(,2)和(,﹣2)(1)求函数f(x)的解析式;(2)求函数f(x)在区间(0,)上的对称中心、对称轴;(3)将函数f(x)图象上每一个点向右平移个单位得到函数y=g(x),令h(x)=f(x)•g(x),求函数h(x)在区间(﹣,0)上的最大值,并指出此时x的值.18.已知A、B两地相距2R,以AB为直径作一个半圆,在半圆上取一点C,连接AC、BC,在三角形ABC内种草坪(如图),M、N分别为弧、弧的中点,在三角形AMC、三角形BNC上种花,其余是空地.设花坛的面积为S1,草坪的面积为S2,取∠ABC=θ.(1)用θ及R表示S1和S2;(2)求的最小值.19.已知函数f(x)=1+log2x,g(x)=2x.(1)若F(x)=f(g(x))•g(f(x)),求函数F(x)在x∈[1,4]的值域;(2)令G(x)=f(8x2)f()﹣kf(x),已知函数G(x)在区间[1,4]有零点,求实数k的取值范围;(3)若H(x)=,求H()+H()+H()+…+H()的值.20.对于定义在R上的函数f(x),定义同时满足下列三个条件的函数为“Z函数”:①对任意x∈(﹣∞,a],都有f(x)=C1;②对任意x∈[b,+∞),都有f(x)=C2;③对任意x∈(a,b),都有(f(x)﹣C1)(f(x)﹣C2)<0.(其中a<b,C1,C2为常数)(1)判断函数f1(x)=|x﹣1|﹣|x﹣3|+1和f2(x)=x﹣|x﹣2|是否为R上的“Z函数”?(2)已知函数g(x)=|x﹣2|﹣,是否存在实数m,使得g(x)为R上的“Z函数”?若存在,求实数m的值;否则,请说明理由;(3)设f(x)是(1)中的“Z函数”,令h(x)=|f(x)|,若h(2a2+a)=h(4a),求实数a的取值范围.2015-2016学年江苏省无锡市天一中学高一(上)期末数学试卷参考答案与试题解析一、填空题:每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.已知全集U={1,2,3,4},集合A={2,3},B={3,4},则(∁UA)∩(∁UB)={1}.【分析】根据交集与补集的定义,进行化简与运算即可.【解答】解:全集U={1,2,3,4},集合A={2,3},∴∁UA={1,4},B={3,4},∴∁UB={1,2},∴(∁UA)∩(∁UB)={1}.故答案为:{1}.2.已知向量,若,则实数m=﹣1.【分析】先将向量,表示出来,再由二者共线即可得到答案.【解答】解:由题意知,=(1,3)﹣(0,1)=(1,2)=(m,m)﹣(0,1)=(m,m﹣1)∵∴存在实数λ使得即(1,2)=λ(m,