预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共23页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

四川省成都市实验外国语学校2019届高三10月月考数学(理)试题一、选择题(本大题共12小题,共60.0分)1.已知集合1,2,,,则的元素个数为A.2B.3C.4D.8【答案】B【解析】【分析】由题意求出A∩B={0,1,2},由此能求出A∩B的元素个数.【详解】∵集合A={0,1,2,3},B={x∈N|0≤x≤2},∴A∩B={0,1,2},∴A∩B的元素个数为3.故选:B.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.命题“若都是偶数,则是偶数”的逆否命题是()A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数【答案】C【解析】试题分析:命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题3.执行如图所示的程序框图输出的结果是()A.B.C.D.【答案】A【解析】【分析】根据程序框图循环结构运算,依次代入求解即可。【详解】根据程序框图和循环结构算法原理,计算过程如下:所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题。4.已知,,那么为A.B.C.D.【答案】D【解析】【分析】将变为,利用两角差的正切公式,求得的值.【详解】,本题正确选项:【点睛】本题主要考查两角差的正切公式的应用,属于基础题.关键在于能够将所求角利用已知角表示出来,从而可以快速求解.5.设,则二项式展开式的常数项是A.160B.20C.D.【答案】D【解析】【分析】利用微积分基本定理求出,利用二项展开式的通项公式求出通项,令的指数等于,求出常数项.【详解】展开式的通项为令得故展开式的常数项是本题正确选项:【点睛】本题考查微积分基本定理、二项展开式的通项公式解决二项展开式的特定项问题,属于基础题.6.若某几何体的三视图如图所示,则此几何体的体积等于A.24B.30C.10D.60【答案】A【解析】【分析】根据几何体的三视图得出该几何体是三棱柱去掉一个三棱锥所得的几何体,结合三视图的数据,求出它的体积.【详解】根据几何体的三视图,得该几何体是三棱柱截去一个三棱锥后所剩几何体几何体是底面为边长为的三角形,高为的三棱柱被平面截得的,如图所示:由题意:原三棱柱体积为:截掉的三棱锥体积为:所以该几何体的体积为:本题正确选项:【点睛】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.函数其中,的图象如图所示,为了得到的图象,则只要将的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由图象可知A=1,,所以T=π,又T==π,所以ω=2,即f(x)=sin(2x+φ),又f=sin=sin=-1,所以+φ=+2kπ,k∈Z.即φ=+2kπ,k∈Z,又|φ|<,所以φ=,即f(x)=sin.因为g(x)=cos2x=sin=sin,所以直线将f(x)向左平移个单位长度即可得到g(x)的图象.8.与圆及圆都相外切的圆的圆心在()A.一个椭圆上B.一支双曲线上C.一条抛物线上D.一个圆上【答案】B【解析】试题分析:如图,圆化为,其圆心为;,半径为:;圆化为,其圆心为;,半径为:,设与它们都外切的圆的圆心为:,半径为:,则,所以点形成的双曲线的一支。故选B。考点:双曲线点评:本题由双曲线的定义:到两定点的距离之差的绝对值为一个常数的点形成的轨迹,可判断圆心为双曲线的一支。9.如图,在正方体中,,分别是为,的中点,则下列判断错误的是()A.与垂直B.与垂直C.与平行D.与平行【答案】D【解析】分析:在正方体中,连接,可得,即可判定与不平行.详解:由题意,在正方体中,连接,在中,因为分别是的中点,所以,在面中,,所以与不平行,所以与平行是错误的,故选D.点睛:本题考查了空间几何体的线面位置关系的判定与证明,其中紧扣正方体的结构特征和熟记线面平行的判定与性质是解答的关键.10.设双曲线的一个焦点为,过作双曲线的一条渐近线的垂线,垂足为,且与另一条渐近线交于点,若,则双曲线的离心率为A.B.2C.D.【答案】C【解析】分析:由可得,求得双曲线的渐近线方程,联立求得坐标,根据向量坐标运算,整理即可求得双曲线的离心率;详解:∵的一条渐近线为另一条渐近线为∵过其焦点的直线与垂直,∴的方程为∴由得垂足A的横坐标则进而可得:由由可得,故选C.点睛:本题考查双曲线的标准方程及简单几何性质,考查双曲线的离心率公式,考查计算能力,属于中档题.11.定义在上的函数满足:,且函数为奇函数给出以下3个命题:函数的周期是6;函数的图象关于点对称;函数的图象关于轴对称