预览加载中,请您耐心等待几秒...
1/10
2/10
3/10
4/10
5/10
6/10
7/10
8/10
9/10
10/10

亲,该文档总共17页,到这已经超出免费预览范围,如果喜欢就直接下载吧~

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

绝对值与相反数教案绝对值与相反数教案作为一名老师,就有可能用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么你有了解过教案吗?以下是小编精心整理的绝对值与相反数教案,仅供参考,大家一起来看看吧。绝对值与相反数教案1【学习目标】1.使学生能说出相反数的意义2.使学生能求出已知数的相反数3.使学生能根据相反数的意思进行化简【学习过程】【情景创设】回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。观察A,B两点位置及共到原点的距离,你有什么发现吗?《数轴》专题练习1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的.字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?《2.4数轴》同步测试1下列说法中错误的是()A.一个正数的绝对值一定是正数B.任何数的绝对值都是正数C.一个负数的绝对值一定是正数D.任何数的绝对值都不是负数22017·海安县期中绝对值大于2且不大于5的整数有________个.3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km):+5,-3,+7,-1,-4,+8,-12.求他们从出发到收工返回时,总共行驶的路程.绝对值与相反数教案2一、教学目标:1、掌握绝对值的概念,有理数大小比较法则。2、学会绝对值的计算,会比较两个或多个有理数的大小。3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。二、教学难点:两个负数大小的比较。三、知识重点:绝对值的概念。四、教学过程:(一)设置情境。1、引入课题。星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:(1)用有理数表示黄老师两次所行的路程。(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?2、学生思考后,教师作如下说明:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。3、观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。4、学生回答后,教师说明如下:数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准备。使学生体验数学知识与生活实际的联系。因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备。(二)合作交流。1、探究规律例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?—3,5,0,+58,0.6。2、要求小组讨论,合作学习。3、教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则。(三)巩固练习。1、其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别。求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例。学生能做的尽量让学生完成,教师在教学过程中只是组织者。本着这个理念,设计这个讨论。2、结合实际发现新知引导学生看教科书的'图,并回答相关问题:(1)把14个气温从低到高排列。(2)把这14个数用数轴上的点表示出来。3、观察并思考:(1)观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?应怎样比较两个数的大小呢?(2)学生交流后,教师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数。在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。4、想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数—100和—90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关